access icon free Impact of antenna correlation on the physical layer security of cooperative relaying with OSTBC system

This study presents an analysis for evaluating the physical layer (PHY) security performance of a two-hop amplify-and-forward cooperative relaying system employing Alamouti orthogonal space–time block coding (OSTBC) in the presence of an eavesdropper, where the transmit antennas for OSTBC are assumed to be spatially correlated. It is also assumed that the authorised main channels as well as the non-authorised eavesdropper channels follow Rayleigh fading distribution. Closed-form mathematical expressions are derived for three performance metrics for evaluating the PHY security, namely the probability of non-zero secrecy capacity, the secrecy outage probability, and the average secrecy capacity. Using the extensive numerical results obtained from the derived mathematical expressions, the impact of antennas correlation on the PHY secrecy performance of the system is studied and evaluated under different parameters. It is also shown that the antennas correlation corresponding to the main channels has more impact than the antennas correlation corresponding to the eavesdropper channels.

Inspec keywords: orthogonal codes; probability; Rayleigh channels; diversity reception; telecommunication security; space-time block codes; amplify and forward communication; cooperative communication; transmitting antennas

Other keywords: antennas correlation; antenna correlation; average secrecy capacity; PHY security; nonauthorised eavesdropper channels; nonzero secrecy capacity; Alamouti orthogonal space–time block coding; Rayleigh fading distribution; OSTBC system; PHY secrecy performance; secrecy outage probability; two-hop amplify-and-forward cooperative relaying system; transmit antennas; closed-form mathematical expressions; derived mathematical expressions; physical layer security performance; authorised main channels

Subjects: Other topics in statistics; Codes; Radio links and equipment

References

    1. 1)
      • 21. Chraiti, M., Ghrayeb, A., Assi, C., et al: ‘On the achievable secrecy diversity of cooperative networks with untrusted relays’, IEEE Trans. Commun., 2017, 66, (1), pp. 3953.
    2. 2)
      • 11. Ssettumba, T., El-Malek, A.H.A., Elsabrouty, M., et al: ‘Physical layer security enhancement for internet of things in the presence of co-channel interference and multiple eavesdroppers’, IEEE Internet Things J., 2019, 6, (4), pp. 64416452.
    3. 3)
      • 18. Atapattu, S., Dharmawansa, P., Di Renzo, M., et al: ‘Multiuser relay selection for full-duplex radio’, IEEE Trans. Commun., 2019, 67, (2), pp. 955972.
    4. 4)
      • 19. Hyadi, A., Rezki, Z., Alouini, M.-S.: ‘Secure multiple-antenna block-fading wiretap channels with limited CSI feedback’, IEEE Trans. Wirel. Commun., 2017, 16, (10), pp. 66186634.
    5. 5)
      • 32. Torabi, M., Haccoun, D., Ajib, W.: ‘Spectral efficiency analysis of rate-adaptive user selection diversity in orthogonal space time block coding multiple-input multiple-output systems with antenna selection’, IET Commun., 2011, 5, (5), pp. 629643.
    6. 6)
      • 26. Kim, S.-I., Kim, I.-M., Heo, J.: ‘Secure transmission for multiuser relay networks’, IEEE Trans. Wirel. Commun., 2015, 14, (7), pp. 37243737.
    7. 7)
      • 34. Torabi, M., Frigon, J.F., Haccoun, D.: ‘Adaptive transmission in amplify-and-forward cooperative communications using orthogonal space–time block codes under spatially correlated antennas’, IET Commun., 2015, 9, (14), pp. 16831690.
    8. 8)
      • 1. Mukherjee, A.: ‘Physical-layer security in the internet of things: sensing and communication confidentiality under resource constraints’, Proc. IEEE, 2015, 103, (10), pp. 17471761.
    9. 9)
      • 9. Wyner, A.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    10. 10)
      • 37. Li, M., Yin, H., Huang, Y., et al: ‘The security of cognitive multiuser networks over space-and-time correlated channels’, IEEE Syst. J., 2019, 13, (3), pp. 28062817.
    11. 11)
      • 43. Torabi, M., Ajib, W., Haccoun, D.: ‘Performance analysis of amplify-and-forward cooperative networks with relay selection over Rayleigh fading channels’. IEEE 69th Vehicular Technology Conf., VTC Spring 2009, Barcelona, Spain, 2009, pp. 15.
    12. 12)
      • 38. Torabi, M., Frigon, J.-F., Haccoun, D.: ‘Impact of spatial correlation on the BER performance of cooperative wireless relay networks with OSTBC’, IET Commun., 2016, 10, (8), pp. 975979.
    13. 13)
      • 40. Jeon, H., Kim, N., Choi, J., et al: ‘Bounds on secrecy capacity over correlated ergodic fading channels at high SNR’, IEEE Trans. Inf. Theory, 2011, 57, (4), pp. 19751983.
    14. 14)
      • 45. Torabi, M., Haccoun, D., Ajib, W.: ‘Performance analysis of cooperative diversity with relay selection over non-identically distributed links’, IET Commun., 2010, 4, (5), pp. 596605.
    15. 15)
      • 7. Hyadi, A., Rezki, Z., Alouini, M.-S.: ‘An overview of physical layer security in wireless communication systems with CSIT uncertainty’, IEEE Access, 2016, 4, pp. 61216132.
    16. 16)
      • 42. Ferdinand, N.S., da Costa, D.B., Latva-aho, M.: ‘Physical layer security in MIMO OSTBC line-of-sight wiretap channels with arbitrary transmit/receive antenna correlation’, IEEE Wirel. Commun. Lett.2013, 2, (5), pp. 467470.
    17. 17)
      • 10. Barros, J., Rodrigues, M.R.: ‘Secrecy capacity of wireless channels’. IEEE Int. Symp. on Information Theory, Seattle, WA, USA, July 2006, pp. 356360.
    18. 18)
      • 39. Torabi, M., Nerguizian, C.: ‘Impact of antenna correlation on the BER performance of a cognitive radio network with Alamouti STBC’, IEEE Wirel. Comm Lett., 2016, 5, (3), pp. 264267.
    19. 19)
      • 3. Wang, N., Wang, P., Alipour-Fanid, A., et al: ‘Physical layer security of 5G wireless networks for IoT: challenges and opportunities’, IEEE Internet Things J., 2003, 6, (5), pp. 81698181.
    20. 20)
      • 31. Kim, I.-M.: ‘Exact BER analysis of OSTBCs in spatially correlated MIMO channels’, IEEE Trans. Commun., 2006, 54, (8), pp. 13651373.
    21. 21)
      • 14. Zou, Y., Wang, X., Shen, W.: ‘Optimal relay selection for physical-layer security in cooperative wireless networks’, IEEE J. Sel. Areas Commun., 2013, 31, (10), pp. 20992111.
    22. 22)
      • 41. Alexandropoulos, G.C., Peppas, K.P.: ‘Secrecy outage analysis over correlated composite Nakagami-m/Gamma fading channels’, IEEE Commun. Lett., 2018, 22, (1), pp. 7780.
    23. 23)
      • 24. Lv, L., Chen, J., Yang, L., et al: ‘Improving physical layer security in untrusted relay networks: cooperative jamming and power allocation’, IET Commun., 2017, 11, (3), pp. 393399.
    24. 24)
      • 30. Torabi, M., Haccoun, D., Ajib, W.: ‘Performance analysis of scheduling schemes for rate-adaptive MIMO OSFBC-OFDM systems’, IEEE Trans. Veh. Technol., 2009, 59, (5), pp. 23632379.
    25. 25)
      • 8. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    26. 26)
      • 33. Torabi, M., Haccoun, D.: ‘Performance analysis of cooperative diversity systems with opportunistic relaying and adaptive transmission’, IET Commun., 2011, 5, (3), pp. 264273.
    27. 27)
      • 17. BaghaeiPouri, A., Torabi, M.: ‘Physical layer security in space–time block codes from coordinate interleaved orthogonal design’, IET Commun., 2020, 14, (12), pp. 20072017.
    28. 28)
      • 20. Lei, H., Ansari, I.S., Gao, C., et al: ‘Physical-layer security over generalised-K fading channels’, IET Commun., 2016, 10, (16), pp. 22332237.
    29. 29)
      • 27. Jeong, C., Kim, I.-M., Kim, D.I.: ‘Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system’, IEEE Trans. Signal Process., 2011, 60, (1), pp. 310325.
    30. 30)
      • 12. Zou, Y., Zhu, J., Wang, X., et al: ‘Improving physical-layer security in wireless communications using diversity techniques’, IEEE Netw.2015, 29, (1), pp. 4248.
    31. 31)
      • 6. Zou, Y., Zhu, J., Wang, X., et al: ‘A survey on wireless security: technical challenges, recent advances, and future trends’, Proc. IEEE, 2016, 104, (9), pp. 17271765.
    32. 32)
      • 22. Zhang, C., Ge, J., Gong, F., et al: ‘Improving physical-layer security for wireless communication systems using duality-aware two-way relay cooperation’, IEEE Syst. J., 2018, 13, (2), pp. 12411249.
    33. 33)
      • 15. Fan, L., Lei, X., Duong, T., et al: ‘Secure multiuser communications in multiple amplify-and-forward relay networks’, IEEE Trans. Commun., 2014, 62, (9), pp. 32993310.
    34. 34)
      • 2. Wu, Y., Khisti, A., Xiao, C., et al: ‘A survey of physical layer security techniques for 5G wireless networks and challenges ahead’, IEEE J. Sel. Areas Commun., 2018, 36, (4), pp. 679695.
    35. 35)
      • 36. Yang, N., Suraweera, H.A., Collings, I.B., et al: ‘Physical layer security of TAS/MRC with antenna correlation’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (1), pp. 254259.
    36. 36)
      • 28. Wu, L., Yang, L., Chen, J., et al: ‘Physical layer security for cooperative relaying over generalized-K fading channels’, IEEE Wirel. Commun. Lett., 2018, 7, (4), pp. 606609.
    37. 37)
      • 44. Anghel, P., Kaveh, M.: ‘Exact symbol error probability of a cooperative network in a Rayleigh-fading environment’, IEEE Trans. Wirel. Commun., 2004, 3, (5), pp. 14161421.
    38. 38)
      • 16. Peppas, K.P., Sagias, N.C., Maras, A.: ‘Physical layer security for multiple-antenna systems: a unified approach’, IEEE Trans. Commun., 2016, 64, (1), pp. 314328.
    39. 39)
      • 5. Bloch, M., Barros, J., Rodrigues, M.R., et al: ‘Wireless information-theoretic security’, IEEE Trans. Inf. Theory, 2008, 54, (6), pp. 25152534.
    40. 40)
      • 25. Atallah, M., Kaddoum, G.: ‘Secrecy analysis in wireless network with passive eavesdroppers by using partial cooperation’, IEEE Trans. Veh. Technol., 2019, 68, (7), pp. 72257230.
    41. 41)
      • 13. Alves, H., Souza, R.D., Debbah, M., et al: ‘Performance of transmit antenna selection physical layer security schemes’, IEEE Signal Process. Lett., 2012, 19, (6), pp. 372375.
    42. 42)
      • 35. Ferdinand, N., Rajatheva, N.: ‘Unified performance analysis of two-hop amplify-and-forward relay systems with antenna correlation’, IEEE Trans. Wirel. Commun., 2011, 10, (9), pp. 30023011.
    43. 43)
      • 29. BaghaeiPouri, A., Torabi, M.: ‘OFDM/OQAM transmission with improved physical layer security’, Phys. Commun., 2019, 36, p. 100787.
    44. 44)
      • 4. Deng, Z., Li, Z., Zhang, Q., et al: ‘Beamforming design for physical layer security in a two-way cognitive radio IoT network with SWIPT’, IEEE Internet Things J., 2019, 6, (6), pp. 1078610798.
    45. 45)
      • 23. Atapattu, S., Ross, N., Jing, Y., et al: ‘Physical-layer security in full-duplex multi-hop multi-user wireless network with relay selection’, IEEE Trans. Wirel. Commun., 2019, 18, (2), pp. 12161232.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1344
Loading

Related content

content/journals/10.1049/iet-com.2019.1344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading