Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Void hole avoidance routing algorithm for underwater sensor networks

A communication void is one of the most serious issues in any routing techniques. This issue occurs when a node does not have any forwarder node to forward the data packets towards the sink node or surface station. The presence of a void node affects the overall performance of routing techniques in terms of end-to-end delay, data loss, energy consumption, and so on. The primary objective of this work is to avoid the void region in underwater sensor networks (UWSNs). For the same purpose, this work introduces the void-hole avoidance routing algorithm for UWSNs. This work avoids horizontal transmission, which further reduces the end-to-end delay. The residual energy, depth, holding time, and distance from the sending node to the forwarding node and forwarding node to the surface station are used as a matrix to select the best forwarder node. The simulation has been done on MATLAB to analyse the performance of the proposed algorithm. The proposed routing algorithm attained better performance using the metrics, namely packet delivery delay, number of dead nodes, and energy tax with the values of 0.9147, 48, and 72.14 by varying the transmission range, and 0.9184, 38, and 71.12 by varying the network size, respectively.

References

    1. 1)
      • 28. Ghoreyshi, S.M., Shahrabi, A, Boutaleb, T.: ‘An inherently void avoidance routing protocol for underwater sensor networks’. IEEE Int. Symp. on Wireless Communication Systems (ISWCS), Brussels, Belgium, 2015, pp. 361365.
    2. 2)
      • 9. Andrade, R.R.., Barbari, M., Conti, L., et al: ‘Alternative form to obtain the black globe temperature from environmental variables’, Agronomy Res., 2019, 17, (3), pp. 900906.
    3. 3)
      • 31. TaghiKheirabadi, M, Mohamad, M.M.: ‘Greedy routing in underwater acoustic sensor networks: a survey’, J. Distrib. Sens. Netw., 2013, 3.
    4. 4)
      • 6. Nayyar, A., Puri, V., Le, D.-N: ‘Comprehensive analysis of routing protocols surrounding underwater sensor networks (UWSNs)’, Adv. Intell. Syst. Comput., 2018, 808, pp. 435450.
    5. 5)
      • 24. Rahman, Z., Hashim, F., Rasid, M.F.A., et al: ‘Totally oppor-tunistic routing algorithm (TORA) for underwater wireless sensor network’, PLoS ONE, 2018, 13, (6).
    6. 6)
      • 8. Cristin, R., Cyril Raj, V., Marimuthu, R.: ‘Face image forgery detection by weight optimized neural network model’, Multimed. Res. (MR), 2019, 2, (2), pp. 1927.
    7. 7)
      • 13. Ghoreyshi, S.M., Shahrabi, A., Boutaleb, T.: ‘An opportunistic void avoidance routing protocol for underwater sensor networks’. IEEE Int. Conf. on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland, 2016, pp. 316323.
    8. 8)
      • 15. Chipara, O., He, Z., Xing, G., et al: ‘Real-time power-aware routing in sensor networks’. IEEE Int. Workshop on Quality of Service, New Haven, CT, USA, 2006, pp. 8392.
    9. 9)
      • 5. Kong, J., Cui, J.H., Wu, D, et al: ‘Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications’. IEEE Military Communications Conf., Atlantic City, NJ, USA, 2005, pp. 15351541.
    10. 10)
      • 18. Aissani, M., Mellouk, A., Badache, N, et al: ‘Oriented void avoidance scheme for real-time routing protocols in wireless sensor networks’. IEEE Global Telecommunications Conf., New Orleans, LO, USA, 2008, pp. 15.
    11. 11)
      • 30. Jafri, M. R., Ahmed, S., Javaid, N., et al: ‘AMCTD: adaptive mobility of courier nodes in threshold optimized DBR algorithm for underwater wireless sensor networks’. IEEE Int. Conf. on Broadband, Wireless Computing, Communication and Applications, Compiegne France, BWCCA ‘13, 2013, vol.28, (30), pp. 9399.
    12. 12)
      • 11. Aissani, M., Mellouk, A., Badache, N, et al: ‘A novel approach for void avoidance in wireless sensor networks’, Int. J. Commun. Syst., 2010, 23, (8), pp. 945962.
    13. 13)
      • 4. Proakis, J.G., Sozer, E.M., Rice, J.A, et al: ‘Shallow water acoustic networks’, IEEE Commun. Mag., 2001, 39, (11), pp. 114119.
    14. 14)
      • 29. Muhammad, A., Imran, B., Azween, A, et al: ‘A survey on routing tehcniques in underwater wireless sensor networks’, J. Netw. Comput. Appl., 2011, 34, (6), pp. 19081927.
    15. 15)
      • 16. Karp, B., Kung, H.T.: ‘GPSR: greedy perimeter stateless routing for wireless networks’. ACM Annual Int. Conf. On Mobile Computing And Networking, Boston Massachusetts USA, 2000, pp. 243254.
    16. 16)
      • 3. Xie, P., Zhou, Z., Peng, Z., et al: ‘Void avoidance in three-dimensional mobile underwater sensor networks’. Int. Conf. on Wireless Algorithms, Systems, and Applications, Berlin, Heidelberg, 2009, pp. 305314.
    17. 17)
      • 25. Sungwook, K.: ‘A better performing Q learning game theoretic dis-tributed routing for underwater wireless sensor network’, Int. J. Distrib. Netw., 2018, 14, (1),.
    18. 18)
      • 10. Diamantini, C., Potena, D., Storti, E.: ‘SemPI: a semantic framework for the collaborative construction and maintenance of a shared dictionary of performance indicators’, Future Gener. Comput. Syst., 2016, 54, pp. 352365.
    19. 19)
      • 12. Sadeghpour, S., Meyers, S., Kruth, J.-P., et al: ‘Resonating shell: A spherical-omnidirectional ultrasound transducer for underwater sensor networks’, Multidiscip. Digit. Publ. Inst., 2019, 19, (4), p. 757.
    20. 20)
      • 27. Khan, G., Dwivedi, R.K.: ‘Energy efficient routing algorithm for void avoidance in UWSNs using residual energy and depth va-riance’, Int. J. Comput. Netw. Commun., 2018, 10, (4), pp. 6178.
    21. 21)
      • 32. Yang, X.-S.: ‘Firefly algorithms for multimodal optimization’, 2009, pp. 169178.
    22. 22)
      • 2. Zandi, R., Kamarei, M., Amiri, H., et al: ‘Underwater sensor network positioning using an AUV moving on a random waypoint path’, IETE J. Res., 2015, 61, (6), pp. 693698.
    23. 23)
      • 14. He, T., Stankovic, J.A., Abdelzaher, T.F, et al: ‘A spatiotemporal communication protocol for wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2005, 16, (10), pp. 9951006.
    24. 24)
      • 22. Ayaz, M., Abdullah, A.: ‘Hop-by-hop dynamic addressing based (H2-DAB) routing protocol for underwater wireless sensor networks’. Proc. of the Int. Conf. on Information and Multimedia Technology, ICIMT, Jeju Island South Korea, 2009, vol. 16, (18), pp. 436441.
    25. 25)
      • 23. Hao, W., Shilian, W., Renfie, B, et al: ‘A novel cross-layer routing protocol based on network coding for underwater sensor networks’, Sensors, 2017, 17, (8), pp. 18211846.
    26. 26)
      • 19. Gola, K.K., Gupta, B.: ‘Underwater sensor networks routing (UWSN-R): a comprehensive survey’, Sens. Lett., 2017, 15, (11), pp. 877890.
    27. 27)
      • 7. Fang, Q., Gao, J, Guibas, L.J.: ‘Locating and bypassing routing holes in sensor networks’. IEEE INFOCOM, Hong Kong, China, 2004, vol. 4, pp. 24582468.
    28. 28)
      • 26. Khan, G., Dwivedi, R.K.: ‘FPRTR- Fault persistent real time routing algorithm for underwater acoustic sensor networks’, Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), Malaviya National Institute of Technology, Jaipur, India, 2018.
    29. 29)
      • 21. Xie, P., Cui, H. J., Lao, L.: ‘VBF: vector-based forwarding protocol for underwater sensor networks’. Networking technolo-gies, services, and protocols; performance of computer and communi-cation networks. Mobile and wireless communications systems, Coimbra Portugal, 2006, vol. 15, (19), pp. 12161221.
    30. 30)
      • 20. Bouk, S., Ahmed, S., Park, K.J, et al: ‘Edove: energy and depth variance-based opportunistic void avoidance scheme for underwater acoustic sensor networks’, Sensors, 2017, 17, (10), p. 2212.
    31. 31)
      • 17. Lu, C., Blum, B.M., Abdelzaher, T.F., et al: ‘RAP: A real-time communication architecture for large-scale wireless sensor networks’. Virginia Univ Charlottesville Dept of Computer Science, San Jose, CA, USA, 2002.
    32. 32)
      • 1. Lee, J.Y., Yun, N.Y., Muminov, S., et al: ‘A focus on practical As-sessment of MAC protocols for underwater acoustic communication with regard to network architecture’, IETE Tech. Rev., 2013, 30, (5), pp. 375381.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1325
Loading

Related content

content/journals/10.1049/iet-com.2019.1325
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address