Your browser does not support JavaScript!

On the energy detection performance of multi-antenna correlated receiver for vehicular communication using MGF approach

On the energy detection performance of multi-antenna correlated receiver for vehicular communication using MGF approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this work, energy detection-based spectrum sensing for multiple antenna receiver under the effect of mobility is investigated by considering L number of correlated antenna branches. The authors consider the uniform, exponential and arbitrarily correlation among the antenna branches based on the spacing between them. The moment generating function (MGF) approach is applied to obtain the statistical knowledge of the received signal to noise ratio because the Laplace domain behaviour will help to derive the closed-form expressions using simple algebraic operations. They derived the closed-form expressions for the detection probability over Nakagami-m fading, in terms of Lauricella and Confluent Hypergeometric function for maximal ratio combining (MRC) and equal gain combining (EGC) diversity techniques under the effect of vehicle mobility. Monte-Carlo simulation is carried out to validate the derived analytical expressions. The results show that the degradation in detection performance due to fading correlation can be reduced by choosing the appropriate diversity scheme and by increasing the number of antennas. Furthermore, they also found that at high fading parameter () value, the low value of the probability of false alarm and highly correlated fading, MRC works better than EGC for high relative velocity.


    1. 1)
      • 19. Al-Juboori, S., Fernando, X.N.: ‘Multiantenna spectrum sensing over correlated Nakagami- m channels with MRC and EGC diversity receptions’, IEEE Trans. Veh. Technol, 2018, 67, (3), pp. 21552164.
    2. 2)
      • 21. Kavaiya, S., Patel, D.K., Guan, Y.L., et al: ‘On the energy detection performance of arbitrarily correlated dual antenna receiver for vehicular communication’, IEEE Commun. Lett., 2019, 23, (7), pp. 11861189.
    3. 3)
      • 31. Abramowitz, M., Stegun, I.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (U.S. Department of Commerce, Washington, DC, 2018).
    4. 4)
      • 10. Herath, S.P., Rajatheva, N., Tellambura, C.: ‘Unified approach for energy detection of unknown deterministic signal in cognitive radio over fading channels’. Proc. IEEE The Int. Conf. on Communications (ICC) Workshop, Dresden, Germany, June 2009, pp. 15.
    5. 5)
      • 9. Herath, S.P., Rajatheva, N., Tellambura, C.: ‘On the energy detection of unknown deterministic signal over nakagami channels with selection combining’. Proc. IEEE CSECE, 2009, pp. 745749.
    6. 6)
      • 17. Le, K.N.: ‘Distributions of multivariate equal-correlated Nakagami- m fading employing MRC’, IEEE Trans. Veh. Technol., 2019, 68, (9), pp. 93089312.
    7. 7)
      • 24. Zhu, S., Guo, C., Feng, C., et al: ‘Performance analysis of cooperative spectrum sensing in cognitive vehicular networks with dense traffic’. Vehicular Technology Conf. (VTC), Montreal, Canada, 2016, pp. 16.
    8. 8)
      • 23. Karedal, J., Czink, N., Paier, A., et al: ‘Path loss modeling for vehicle-to-vehicle communications’, IEEE Trans. Veh. Technol., 2011, 60, (1), pp. 323328.
    9. 9)
      • 29. Zlatanov, N., Hadzi-Velkov, Z., Karagiannidis, G.K.: ‘An efficient approximation to the correlated Nakagami-m sums and its application in equal gain diversity receivers’, IEEE Trans. Wireless Commun., 2010, 9, (1), pp. 302310.
    10. 10)
      • 6. Digham, F.F., Alouini, M.-S., Simon, M.K.: ‘On the energy detection of unknown signals over fading channels’. Proc. IEEE Int. Conf. Communication, Anchorage, AK, USA, May 2003, vol. 5, pp. 35753579.
    11. 11)
      • 27. Simon, M.K., Alouini, M.: ‘A unified approach to the performance analysis of digital communication over generalized fading channels’, Proc. IEEE, 1998, 86, (9), pp. 18601877.
    12. 12)
      • 13. Ikki, S.S., Ahmed, M.H.: ‘Performance of cooperative diversity using equal gain combining (EGC) over Nakagami-m fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (2), pp. 557562.
    13. 13)
      • 20. Gahane, L., Sharma, P.K., Varshney, N., et al: ‘An improved energy detector for mobile cognitive users over generalized fading channels’, IEEE Trans. Commun., 2018, 66, pp. 534545.
    14. 14)
      • 11. Herath, S.P., Rajatheva, N., Tellambura, C.: ‘Energy detection of unknown signals in fading and diversity reception’, IEEE Trans. Commun., 2011, 59, (9), pp. 24432453.
    15. 15)
      • 8. Herath, S.P., Rajatheva, N.: ‘Analysis of equal gain combining in energy detection for cognitive radio over Nakagami channels’. Proc. IEEE GLOBECOM, Los Angeles, CA, USA, 2008, pp. 15.
    16. 16)
      • 32. Song, Z., Zhang, K., Guan, Y.L.: ‘Generating correlated Nakagami fading signals with arbitrary correlation and fading parameters’. Proc. IEEE ICC '02, New York, NY, USA, 2002, Vol. 3, pp. 13631367.
    17. 17)
      • 12. Banjade, V.R.S., Rajatheva, N., Tellambura, C.: ‘Performance analysis of energy detection with multiple correlated antenna cognitive radio in Nakagami-m fading’, IEEE Commun. Lett., 2012, 16, (4), pp. 502505.
    18. 18)
      • 16. Al-Juboori, S., Fernando, X., Deng, Y., et al: ‘Impact of inter branch correlation on multichannel spectrum sensing with SC and SSC diversity combining schemes’, IEEE Trans. Veh. Technol., 2018, 68, (1), pp. 456470.
    19. 19)
      • 25. Simon, M.K., Alouini, M.-S.: ‘Digital communication over fading channels, vol. 95’ (John Wiley & Sons, 2005).
    20. 20)
      • 7. Digham, F.F., Alouini, M.S., Simon, M.K.: ‘On the energy detection of unknown signals over fading channels’, IEEE Trans. Commun., 2007, 55, (1), pp. 2124.
    21. 21)
      • 14. Namdar, M., Ilhan, H., Durak-Ata, L.: ‘Optimal detection thresholds in spectrum sensing with receiver diversity’, Wirel. Pers. Commun., 2016, 87, (1), pp. 6381.
    22. 22)
      • 22. Ai, Y., Cheffena, M., Mathur, A., et al: ‘On physical layer security of double Rayleigh fading channels for vehicular communications’, IEEE Commun Lett., 2018, 7, (6), pp. 10381041.
    23. 23)
      • 1. Vegni, A.M., Agrawal, D.P.: ‘Cognitive vehicular networks’ (CRC Press Inc., Boca Raton, FL, USA, 2016).
    24. 24)
      • 18. Ranjeeth, M.: ‘Cooperative spectrum sensing with square law combining diversity reception’. Proc. International Conference on Signal Processing, Communication and Networking (ICSCN), Chennai, India, 2015, pp. 16.
    25. 25)
      • 5. Kostylev, V.I.: ‘Energy detection of a signal with random amplitude’. Proc. Int. Conf. on Communications, New York, NY, USA, 2002, vol. 3, pp. 16061610.
    26. 26)
      • 28. Aalo, V.A.: ‘Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment’, IEEE Trans. Commun., 1995, 43, (8), pp. 23602369.
    27. 27)
      • 2. Win, M.Z., Chrisikos, G., Winters, J.H.: ‘MRC performance for M-ary modulation in arbitrarily correlated Nakagami fading channels’, IEEE Commun. Lett., 2000, 4, (10), pp. 301303.
    28. 28)
      • 30. Shiu, D.-S., Foschini, G.J., Gans, M.J., et al: ‘Fading correlation and its effect on the capacity of multielement antenna systems’, IEEE Trans. Commun., 2000, 48, (3), pp. 502513.
    29. 29)
      • 15. Adebola, E., Annamalai, A.: ‘Unified analysis of energy detectors with diversity reception in generalised fading channels’, IET Commun., 2014, 8, (17), pp. 30953104.
    30. 30)
      • 3. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116130.
    31. 31)
      • 26. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, 2014).
    32. 32)
      • 4. Urkowitz, H.: ‘Energy detection of unknown deterministic signals’, Proc. IEEE, 1967, 55, (4), pp. 523531.

Related content

This is a required field
Please enter a valid email address