access icon free Rollout algorithm for light-weight physical-layer authentication in cognitive radio networks

Cognitive radio networks (CRNs) are vulnerable to spoofing attacks due to their wireless and cognitive nature. Since the traditional cryptographic authentication can hardly prevent such attacks in CRNs, the physical-layer authentication has been investigated for recent years. To achieve a light-weight physical-layer authentication, a rollout partially observable Markov decision process-based algorithm, named RoPOMDP, is proposed in this study. In general, RoPOMDP formulates the physical-layer authentication as a zero-sum game, based on which a hypothesis test upon channel vectors is developed. That allows us to design the gains for both spoofers and receivers based on Bayesian risks for the game, in which the spoofing attack probability is predicted by a non-linear function approximation utilising v-support vector regression. Then, a RoPOMDP is employed to estimate the optimal threshold for the test statistic such that spoofing attacks can be detected. The theoretical analysis and simulations indicate that: (i) RoPOMDP improves the spoofing detection accuracy; (ii) as a light-weight algorithm, the complexity of RoPOMDP is lower than contemporary ones.

Inspec keywords: authorisation; Markov processes; cognitive radio; function approximation; Bayes methods; telecommunication security; regression analysis

Other keywords: rollout algorithm; light-weight physical-layer authentication; v-support vector regression; cryptographic authentication; CRNs; wireless nature; cognitive radio networks; nonlinear function approximation; Markov decision process-based algorithm; spoofing attack probability; RoPOMDP; cognitive nature

Subjects: Radio links and equipment; Markov processes; Data security; Markov processes; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 25. Liang, X., Xiaoyue, W., Zhu, H.: ‘PHY-layer authentication with multiple landmarks with reduced overhead’, IEEE Trans. Wirel. Commun., 2017, 17, (3), pp. 16761687.
    2. 2)
      • 26. Liang, X., Tianhua, C., Guoan, H., et al: ‘Game theoretic study on channel-based authentication in MIMO systems’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 74747484.
    3. 3)
      • 20. Dong, M., Ota, K., Li, H., et al: ‘RENDEZVOUS: towards fast event detecting in wireless sensor and actor networks’, Computing, 2014, 96, (10), pp. 9951010.
    4. 4)
      • 4. Jie, Y., Yingying, C., Trappe, W., et al: ‘Detection and localization of multiple spoofing attackers in wireless networks’, IEEE Trans. Parallel Distrib. Syst., 2013, 24, (1), pp. 4458.
    5. 5)
      • 30. Bertsekas, D.P., Castanon, D.A.: ‘Rollout algorithms for stochastic scheduling problems’, J. Heuristics, 1999, 5, (1), pp. 89108.
    6. 6)
      • 23. Liang, X., Yan, L., Guolong, L., et al: ‘Spoofing detection with reinforcement learning in wireless networks’. GLOBECOM 2015–2015 IEEE Global Communications Conf., San Diego, CA, USA, 2015.
    7. 7)
      • 15. Hu, P., Li, H., Fu, H., et al: ‘Dynamic defense strategy against advanced persistent threat with insiders’. IEEE INFOCOM 2015–IEEE Conf. on Computer Communications, Hong Kong, China, 2015.
    8. 8)
      • 33. Liang, X., Greenstein, L., Mandayam, N., et al: ‘Fingerprints in the ether: using the physical layer for wireless authentication’. Proc. IEEE ICC, Beijing, China, 2007, pp. 46464651.
    9. 9)
      • 16. He, F., Li, X., Xianbin, W.: ‘Coordinated multiple relays based physical layer security improvement: a single leader-multiple followers Stackelberg game scheme’, IEEE Trans. Inf. Forensics Sec., 2018, 13, (1), pp. 197209.
    10. 10)
      • 31. Wu, G., Chong, E.K.P., Givan, R.: ‘Burst-level congestion control using hindsight optimization’, IEEE Trans. Autom. Control, 2002, 47, (6), pp. 979991.
    11. 11)
      • 6. Jinliang, L., Liang, X., Guolong, L.: ‘Active authentication with reinforcement learning based on ambient radio signals’, Multimedia Tools Appl., 2014, 76, (3), pp. 39793998.
    12. 12)
      • 9. Tugnait, J.: ‘Wireless user authentication via comparison of power spectral densities’, IEEE J. Selected Areas Commun., 2013, 31, (9), pp. 17911802.
    13. 13)
      • 17. He, F., Xianbin, W., Lajos, H.: ‘Learning-aided physical layer authentication as an intelligent process’, IEEE Trans. Commun., 2019, 67, (3), pp. 22602273.
    14. 14)
      • 3. Zeng, K., Govindan, K., Mohapatra, P.: ‘Non-cryptographic authentication and identification in wireless networks [security and privacy in emerging wireless networks]’, IEEE Wirel. Commun., 2010, 17, (5), pp. 5662.
    15. 15)
      • 5. Kalamandeen, A., Scannell, A., Lara, E., et al: ‘Ensemble: cooperative proximity-based authentication’. Proc. Int. Conf. on Mobile Systems, Applications and Services, San Francisco, CA, USA, 2010, pp. 331344.
    16. 16)
      • 7. Xiaofu, W., Zhen, Y.: ‘Physical-layer authentication for multi-carrier transmission’, IEEE Commun. Lett., 2015, 19, (1), pp. 7477.
    17. 17)
      • 22. Xiaoying, Q., Ting, J., Sheng, W., et al: ‘Physical layer authentication enhancement using a Gaussian mixture model’, IEEE Access, 2018, 6, pp. 5358353592.
    18. 18)
      • 19. Ota, K., Dong, M., Cheng, Z., et al: ‘ORACLE: mobility control in wireless sensor and actor networks’, Comput. Commun., 2012, 35, (9), pp. 10291037.
    19. 19)
      • 2. Nasnin, F., Islam, M.N., Chakrabarty, A.: ‘Security analysis on cognitive radio network’, 2019.
    20. 20)
      • 8. Liu, H., Wang, Y., Liu, J., et al: ‘Practical user authentication leveraging channel state information(CSI)’. Proc. ACM Symp. on Information, Computer and Communication Security, Kyoto, Japan, 2014, pp. 389400.
    21. 21)
      • 12. Hou, W., Wang, X., Chouinard, J.Y., et al: ‘Physical layer authentication for mobile systems with time-varying carrier frequency offsets’, IEEE Trans. Commun., 2014, 62, (5), pp. 16581667.
    22. 22)
      • 27. Pan, F., Zhibo, P., Hong, W., et al: ‘Threshold-free physical layer authentication based on machine learning for industrial wireless CPS’, IEEE Trans. Ind. Inf., 2019, 15, (12), pp. 64816491.
    23. 23)
      • 29. Schölkopf, B., Bartlett, P., Smola, A., et al: ‘Support vector regression with automatic accuracy control’. Int. Conf. on Artificial Neural Networks, London, 1998, pp. 111116.
    24. 24)
      • 32. Doucet, A., de Freitas, N., Gordon, G.: ‘Sequential Monte Carlo methods in practice’ (Springer-Verlag, New York, 2001).
    25. 25)
      • 11. Liang, X., Reznik, A., Trappe, W., et al: ‘PHY-authentication protocol for spoofing detection in wireless networks’. Global Telecommunications Conf., Miami, FL, USA, 2010.
    26. 26)
      • 21. Ning, X., Changsheng, C.: ‘Slope authentication at the physical layer’, IEEE Trans. Inf. Forensics Sec., 2018, 13, (6), pp. 15791594.
    27. 27)
      • 1. Mitola, J.I., Maguire, G.Q.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun., 1999, 6, (4), pp. 1318.
    28. 28)
      • 28. Xiaozhen, L., Liang, X., Tangwei, X., et al: ‘Reinforcement learning based PHY authentication for VANETs’, IEEE Trans. Veh. Technol., 2020, 69, (3), pp. 30683079.
    29. 29)
      • 13. Xiao, L., Chen, Y., Lin, W.S., et al: ‘Indirect reciprocity security game for large-scale wireless networks’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (4), pp. 13681380.
    30. 30)
      • 14. Wu, Y., Wang, B., Liu, K, et al: ‘Anti-jamming games in multi-channel cognitive radio networks’, IEEE J. Sel. Areas Commun., 2012, 30, (1), pp. 415.
    31. 31)
      • 24. Liang, X., Yan, L., Guoan, H., et al: ‘PHY-layer spoofing detection with reinforcement learning in wireless networks’, IEEE Trans. Veh. Technol., 2016, 65, (12), pp. 1003710047.
    32. 32)
      • 18. Bhunia, S., Sengupta, S., Vázquez-Abad, F.: ‘CR-Honeynet: a learning and decoy based sustenance mechanism against jamming attack in CRN’. Military Communications Conf., Baltimore, MD, USA, 2014.
    33. 33)
      • 10. Jiang, Z., Zhao, J., Li, X., et al: ‘Rejecting the attack: source authentication for WIFI management frames using CSI information’. Proc. IEEE Int. Conf. on Computer Communications (INFOCOM), Turin, Italy, 2013, pp. 25442552.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1275
Loading

Related content

content/journals/10.1049/iet-com.2019.1275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading