Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-objective emperor penguin handover optimisation for IEEE 802.21 in heterogeneous networks

IEEE concentrates on the development of effective media independent handover (IEEE 802.21 MIH) services. The major aim of IEEE 802.21 MIH is to optimise the handover process to make an uninterrupted handover service with less delay. The handover process is categorised into two types a horizontal and vertical process. Among them, vertical handover (VH) needs parameter optimisation for better performance. The optimised result depends on the parameter selection to avoid the rate of handover failure. Although the availability of various optimisation procedures for VH management, many existing works consider one/two parameters for VH optimisation. So that resultant optimal handover solution will not be better in terms of failure rate, latency, and accuracy. Thus, a method of multi-objective emperor penguin handover optimisation (MOEPHO) is developed in the proposed work, which includes almost overall network parameters for VH optimisation. So that, accurate handover with less delay and the minimum energy consumption is achieved in this work. Network simulator 2 working platform is used for the research evaluation. The resultant performances are compared with whale optimisation algorithm-based neural network, adaptive cross-layer design, fuzzy intelligent decision making and novel type 2-fuzzy logic controller to show the effectiveness of MOEPHO.

References

    1. 1)
      • 25. Xu, Y.H., Liu, M.L., Xie, J.W., et al: ‘An IEEE 802.21 MIS-based mobility management for D2D communications over heterogeneous networks (HetNets)’, Concurrency Comput.: Pract. Exp., 2020, 32, (5), p. e5552.
    2. 2)
      • 6. Saeed, R.A.: ‘Handover in a mobile wireless communication network – a review phase’. Int. J Comput. Commun. Inf., 2019, 1, (1), pp. 613.
    3. 3)
      • 13. Niya, S.R., Stiller, B.: ‘Design and evaluation of a time efficient vertical handoff algorithm between LTE-A and IEEE 802.11ad Wireless Networks (No. 2018.03)’, IFI Tecnical Report, 2018.
    4. 4)
      • 16. Al Emam, F.A., Nasr, M.E., Kishk, S.E.: ‘Coordinated handover signaling and cross-layer adaptation in heterogeneous wireless networking’, Mobile Netw. Appl., 2020, 25, pp. 285299.
    5. 5)
      • 5. Bhatt, M.C., Bhardwaj, O., Gupta, P., et al: ‘Analysis of handoff prediction algorithms in wireless networks’. 2018 4th Int. Conf. on Computing Sciences (ICCS) IEEE, Jalandhar, India, 2018, pp. 4047.
    6. 6)
      • 10. Leu, F.Y.: ‘An overview of 802.21 A-2012 and its incorporation into IoT-fog networks using osmotic framework’. IoT as a Service: Third Int. Conf., IoTaaS 2017, Taichung, Taiwan, September 20 {u2013} 22, 2017, Proceedings, Springer 2018, vol. 246, p. 64.
    7. 7)
      • 1. Bagubali, A., Verma, T., Anand, A., et al: ‘Performance analysis of handover schemes in heterogeneous networks’. J. Circuits Syst. Comput., 2018, 27, (11), p. 1850177.
    8. 8)
      • 20. Saeed, M., Kamal, H., El-Ghoneimy, M.: ‘Novel type-2 fuzzy logic technique for handover problems in a heterogeneous network’. Eng., Opt., 2018, 50, (9), pp. 15331543.
    9. 9)
      • 19. Coqueiro, T., Jailton, J., Carvalho, T., et al: ‘A fuzzy logic system for vertical handover and maximizing battery lifetime in heterogeneous wireless multimedia networks’, Wirel. Commun. Mob. Comput., 2019, 2019, pp. 13.
    10. 10)
      • 2. Himayat, N., Yeh, S.P., Gerasimenko, M., et al: ‘Intel IP corp. network selection in a heterogeneous network’, U.S. Patent, 2018, 9, pp. 197872.
    11. 11)
      • 7. Aljeri, N, Boukerche, A.: ‘Mobility and handoff management in connected vehicular networks’. Proc. of the 16th ACM Int. Symp. on Mobility Management and Wireless Access. ACM, London, United Kingdom2018, pp. 8288.
    12. 12)
      • 26. Iqbal, J., Khan, M., Afaq, M., et al: ‘Performance analysis of vertical handover techniques based on IEEE 802.21: Media independent handover standard’, Trans. Emerg. Telecommun. Technol., 2019, 3695, pp. 116.
    13. 13)
      • 24. Chattate, I., Khaili, M.E., Bakkoury, J.: ‘A new fuzzy-TOPSIS based algorithm for enhancing decision making in a heterogeneous network’, J. of Commun., 2019, 14, (3), pp. 194201.
    14. 14)
      • 12. Leu, F.Y., Tsai, K.L., Hung, R.T.: ‘MIH-Based eNB selection for untrusted networks’. Int. Wireless Internet Conf., 2018, pp. 129140.
    15. 15)
      • 18. Parambanchary, D., Rao, V.M.: ‘WOA-NN: a decision algorithm for vertical handover in heterogeneous networks’, Wirel. Netw., 2020, 26, pp. 165180.
    16. 16)
      • 8. Khan, B.M., Bilal, R.: ‘Wireless internet offloading techniques: based on 802.21 medium access control’. Advanced Wireless Sensing Techniques for 5G Networks Chapman and Hall/CRC, 2018, pp. 267283.
    17. 17)
      • 15. Na, T., Ryu, H., Kim, T., et al: ‘Dynamic load balancing mechanism in Mobile gateway with heterogeneous network’. 2018 Int. Conf. on Information and Communication Technology Convergence (ICTC) IEEE, Jeju, South Korea, 2018.
    18. 18)
      • 9. Ahmed, N., Rikli, N.E.: ‘A QoS based algorithm for the vertical handover between WLAN IEEE 802.11 E and WiMAX IEEE 802.16 E’, Int. J. Comput. Digital Syst., 2018, 7, (1), pp. 1122.
    19. 19)
      • 27. Dhiman, G., Kumar, V.: ‘Emperor penguin optimizer: a bio-inspired algorithm for engineering problems’, Knowl.-Based Syst., 2018, 159, pp. 2050.
    20. 20)
      • 3. Mahajan, P.: ‘November. ‘Review paper on optimization of handover parameter in heterogeneous networks’. 2018 3rd Int. Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH) IEEE, Ghaziabad, India, 2018, pp. 15.
    21. 21)
      • 21. Al Emam, F.A., Nasr, M.E., Kishk, S.E.: ‘Adaptive context aware cross-layer vertical handover in heterogeneous networks’. 2018 14th Int. Computer Engineering Conf. (ICENCO) IEEE, Cairo, Egypt, 2018, pp. 5863.
    22. 22)
      • 14. Pandey, D., Kim, B., Gang, H.S., et al: ‘Maximizing network utilization in IEEE 802.21 assisted vertical handover over wireless heterogeneous networks’, J. Inf. Process. Syst., 2018, 14, (3), pp. 771789.
    23. 23)
      • 11. Mansouri, M., Leghris, C.: ‘Considering the velocity in the vertical handover network selection strategy’. Int. Conf. on Advanced Information Technology, Services and Systems, 2018, pp. 3742.
    24. 24)
      • 23. Chattate, I., El Khaili, M., Khiat, A.: ‘Improving modified grey relational method for vertical handover in heterogeneous networks’, Compare., 2019, 10, (2), pp. 301305.
    25. 25)
      • 22. Naresh, M., Reddy, D.V., Reddy, K.R.: ‘Improved vertical handoff decision scheme in heterogeneous wireless network based on SCS’. Int. Conf. on Computer Networks and Communication Technologies Springer, Singapore, 2019, pp. 727737.
    26. 26)
      • 17. UniKL, M.I.I.T., Dao, H., Ghazali, M.A.M., et al: ‘Vertical handover evaluation for heterogeneous networks’, 2018, 7, pp. 148151.
    27. 27)
      • 4. Stamou, A., Dimitriou, N., Kontovasilis, K., et al: ‘Autonomic handover management for heterogeneous networks in a future internet context: a survey’, IEEE Commun. Surv. Tutorials, 2019, 21, pp. 32743297.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1228
Loading

Related content

content/journals/10.1049/iet-com.2019.1228
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address