access icon free Turbulence mitigation in a 28 GHz radio-over-free-space optics link using an integrated Mach–Zehnder interferometer and a diversity combining receiver

The authors propose an integrated Mach–Zehnder interferometer and diversity combining receiver to mitigate the atmospheric turbulence-induced fading in a millimetre-wave (mmW) radio-over-free-space optics (RoFSO) link. They use a carrier frequency of 28 GHz as recommended for the fifth-generation wireless access networks and consider two optical mmW signal generation schemes, namely double-sideband (DSB) and single-sideband (SSB). In direct detection (DD)-based RoFSO, the link performance is limited by atmospheric turbulence. They show that the proposed Rx can overcome this detrimental effect, which is verified by investigation of a 10 Gb/s 16-quadrature amplitude modulation orthogonal frequency-division-multiplexing signal at 28 GHz over a 1 km free-space optics link under weak and strong turbulence regimes. For the DSB scenario, the proposed Rx offers improved error vector magnitudes of about 0.8 and 5.7%, and modulation error ratios of 1.3 and 4.9 dB under weak and strong turbulence regimes, respectively, compared with the DD receiver (DD Rx). For the SSB scenario under weak turbulence, the proposed Rx achieves a 4 dB improvement in the receiver sensitivity and four orders of magnitude enhancement in the bit error rate over the DD Rx. The proposed Rx can be integrated on a single chip for further cost reduction.

Inspec keywords: OFDM modulation; radio access networks; optical modulation; free-space optical communication; optical receivers; millimetre wave generation; atmospheric turbulence; error statistics; microwave photonics; radio-over-fibre; diversity reception; optical links; quadrature amplitude modulation; Mach-Zehnder interferometers

Other keywords: diversity combining receiver; noise figure 4.0 dB; DD receiver; link performance; 16-quadrature amplitude modulation orthogonal frequency-division-multiplexing signal; frequency 28.0 GHz; integrated Mach–Zehnder interferometer; double-sideband; atmospheric turbulence-induced fading; millimetre-wave radio-over-free-space optics; strong turbulence regimes; single-sideband; turbulence mitigation; optical mmW signal generation schemes; fifth-generation wireless access networks; modulation error ratios; receiver sensitivity; noise figure 1.3 dB; weak turbulence regimes; DSB scenario; radio-over-free-space optics; carrier frequency; noise figure 4.9 dB

Subjects: Optical communication equipment; Other topics in statistics; Microwave photonics; Free-space optical links; Modulation and coding methods

References

    1. 1)
      • 22. Singh, M., Malhotra, J.: ‘Performance comparison of M-QAM and DQPSK modulation schemes in a 2 × 20 Gbit/s–40 GHz hybrid MDM–OFDM-based radio over FSO transmission system’, Photonic Netw. Commun., 2019, 38, (3), pp. 378389.
    2. 2)
      • 8. ‘Free space optics 10 gigabits EL-10G’. Available at http://www.ecsystem.cz.
    3. 3)
      • 5. ‘5G spectrum GSMA public policy position’. Available at https://www.gsma.com/.
    4. 4)
      • 7. Pernice, R., Andò, A., Cardinale, M., et al: ‘Indoor free space optics link under the weak turbulence regime: measurements and model validation’, IET Commun., 2015, 9, (1), pp. 6270.
    5. 5)
      • 30. Naila, C.B., Wakamori, K., Matsumoto, M., et al: ‘Transmission analysis of digital TV signals over a radio-on-FSO channel’, IEEE Commun. Mag., 2012, 50, (8), pp. 137144.
    6. 6)
      • 21. Islam, A.H.M.R., Bakaul, M., Nirmalathas, A., et al: ‘Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver’, Opt. Express, 2012, 20, (5), pp. 57075724.
    7. 7)
      • 17. Ozeki, T.: ‘Optical equalizers’, Opt. Lett., 1992, 17, (5), pp. 375377.
    8. 8)
      • 18. Takiguchi, K., Okamoto, K., Moriwaki, K.: ‘Dispersion compensation using a planar lightwave circuit optical equalizer’, IEEE Photonics Technol. Lett., 1994, 6, (4), pp. 561564.
    9. 9)
      • 13. Khalighi, M.A., Uysal, M.: ‘Survey on free space optical communication: a communication theory perspective’, IEEE Commun. Surv. Tutorials, 2014, 16, (4), pp. 22312258.
    10. 10)
      • 29. Verbist, J., Lambrecht, J., Moeneclaey, B., et al: ‘40-Gb/s PAM-4 transmission over a 40 km amplifier-less link using a sub-5V Ge APD’, Photonics Technol. Lett., 2017, 29, (24), pp. 22382241.
    11. 11)
      • 32. Lee, C.H.: ‘Microwave photonics’ (CRC Press, Boca Raton, Florida, USA, 2013, 2nd edn.).
    12. 12)
      • 20. Dong-Nhat, N., Nguyen, L., Malekmohammadi, A.: ‘Using duobinary with first- and second-order optical equalisers for extending transmission distance of optical access networks’, IET Optoelectron., 2018, 12, (5), pp. 239243.
    13. 13)
      • 25. Grabner, M., Kvicera, V.: ‘Measurement of the structure constant of refractivity at optical wavelengths using a scintillometer’, Radioengineering, 2012, 21, (1), pp. 455458.
    14. 14)
      • 6. Van Kerrebrouck, J., Li, H., Spiga, S., et al: ‘10 Gb/s radio-over-fiber at 28 GHz carrier frequency link based on 1550 nm VCSEL chirp enhanced intensity modulation after 2 km fiber’. 2018 Optical Fiber Communications Conf. Exposition, San Diego, USA, 2018, p. W1F.1.
    15. 15)
      • 9. Bohata, J., Komanec, M., Spáčil, J., et al: ‘24–26 GHz radio-over-fiber and free-space optics for fifth-generation systems’, Opt. Lett., 2018, 43, (5), pp. 10351038.
    16. 16)
      • 3. Novak, D., Waterhouse, R.B., Nirmalathas, A., et al: ‘Radio-over-fiber technologies for emerging wireless systems’, IEEE J. Quantum Electron., 2016, 52, (1), pp. 111.
    17. 17)
      • 12. Kaushal, H., Kaddoum, G.: ‘Optical communication in space: challenges and mitigation techniques’, IEEE Commun. Surv. Tutorials, 2017, 19, (1), pp. 5796.
    18. 18)
      • 28. Houtsma, V., Van Veen, D.: ‘Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection’, J. Lightwave Technol., 2018, 36, (1), pp. 122127.
    19. 19)
      • 4. Rappaport, T.S., Xing, Y., MacCartney, G.R., et al: ‘Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models’, IEEE Trans. Antennas Propag., 2017, 65, (12), pp. 62136230.
    20. 20)
      • 11. Rakia, T., Yang, H.C., Alouini, M.S., et al: ‘Outage analysis of practical FSO/RF hybrid system with adaptive combining’, IEEE Commun. Lett., 2015, 19, (8), pp. 13661369.
    21. 21)
      • 23. Dat, P.T., Kanno, A., Inagaki, K., et al: ‘High-capacity wireless backhaul network using seamless convergence of radio-over-fiber’, J. Lightwave Technol., 2014, 32, (20), pp. 39103923.
    22. 22)
      • 15. Zvanovec, S., Perez, J., Ghassemlooy, Z., et al: ‘Route diversity analyses for free-space optical wireless links within turbulent scenarios’, Opt. Express, 2013, 21, (6), pp. 76417650.
    23. 23)
      • 16. Zhang, J., Wang, J., Xu, Y., et al: ‘Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique’, Opt. Lett., 2016, 41, (9), pp. 19091912.
    24. 24)
      • 14. Nor, N.A.M., Komanec, M., Bohata, J., et al: ‘Experimental all-optical relay-assisted FSO link with regeneration and forward scheme for ultra-short pulse transmission’, Opt. Express, 2019, 27, (16), p. 22127.
    25. 25)
      • 19. Dong, P., Xie, C., Buhl, L.L., et al: ‘Silicon in-phase/quadrature modulator with on-chip optical equalizer’, J. Lightwave Technol., 2015, 33, (6), pp. 11911196.
    26. 26)
      • 27. Hsu, J.-H., Yu, M., Liu, F., et al: ‘On channel estimation schemes for APD-based DDM-OFDM-PONs under sub-Nyquist sampling’, Opt. Express, 2018, 26, (18), pp. 2380823818.
    27. 27)
      • 10. Ghassemlooy, Z., Popoola, W.O., Rajbhandari, S.: ‘Optical wireless communications – system and channel modelling with Matlab’ (CRC Press, Boca Raton, Florida, USA, 2019, 2nd edn.).
    28. 28)
      • 26. Doerr, C.R., Chandrasekhar, S., Winzer, P.J., et al: ‘Simple multichannel optical equalizer for mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals’, J. Lightwave Technol., 2004, 22, (1), pp. 249256.
    29. 29)
      • 1. Smith, G.H., Novak, D., Ahmed, Z.: ‘Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators’, IEEE Trans. Microw. Theory Tech., 1997, 45, (8), pp. 14101415.
    30. 30)
      • 2. Thomas, V.A., El-Hajjar, M., Hanzo, L.: ‘Optical single sideband signal generation relying on a single-drive Mach-Zehnder modulator for radio over fibre communications’, IET Commun., 2016, 10, (5), pp. 534539.
    31. 31)
      • 24. Andrews, L.C., Phillips, R.L.: ‘Laser beam propagation through random media’ (SPIE, Bellingham, Washington, USA, 2005).
    32. 32)
      • 31. 36.104, 3GPP TS: ‘Base station (BS) radio transmission and reception’, 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1166
Loading

Related content

content/journals/10.1049/iet-com.2019.1166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading