Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance analysis of an adaptive OFDMA-based CSMA/CA scheme on a wireless network

The conventional carrier-sense multiple access/collision avoidance (CSMA/CA) IEEE 802.11 protocol uses the rigid binary exponential backoff algorithm of the distribution coordination function (DCF) for channel access. The protocol poorly performs under loss by wireless links with high packet error rates and dense networks with numerous collisions from hidden nodes. Furthermore, the scheme is not cognisant of the state of the wireless link in its operation. This work develops hybrid adaptive orthogonal frequency division multiple access (OFDMA) CSMA/CA (hybrid AO–CSMA/CA) protocol that adapts the backoff and congestion window size according to the knowledge of the wireless channel conditions to mitigate against the effects of the loss by wireless links. The protocol utilises OFDM for effective resource allocation and solving the problem of the hidden terminal node on an OFDMA IEEE 802.11-based wireless network. The teletraffic performance analysis of the developed protocol is investigated in terms of throughput and delay metrics on a real dynamic Markovian wireless channel. The performance results indicate that the developed hybrid protocols perform better than the DCF protocol on the lossy wireless communication links.

References

    1. 1)
      • 23. Yeo, J., Agrawala, A.: ‘Packet error model for the IEEE 802.11 MAC protocol’. IEEE Proc. on Personal, Indoor and Mobile Radio Communications (PIMRC), China, 2003, pp. 17221726.
    2. 2)
      • 26. Dai, L., Sun, X.: ‘A unified analysis of IEEE 802.11 DCF networks: stability, throughput, and delay’, IEEE Trans. Mob. Comput., 2012, 12, (8), pp. 15581572.
    3. 3)
      • 36. Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: ‘Ïnfluence of channel BER on IEEE 802.11 DCF’, IET Electron. Lett., 2003, 39, (23), p. 1687.
    4. 4)
      • 15. Choi, J., Byeon, S., Choi, S., et al: ‘Activity probability-based performance analysis and contention control for IEEE 802.11 WLANs’, IEEE Trans. Mob. Comput., 2017, 16, (7), pp. 18021814.
    5. 5)
      • 4. Kim, R.Y.: ‘Sub-channel based uplink OFDMA random access scheme considering hidden nodes in the next generation wireless LAN’, IOSR J. Eng., 2016, 6, (1), pp. 811.
    6. 6)
      • 8. Chatzimisios, P., Boucouvalas, A.C., et al: ‘Effectiveness of RTS/CTS handshake in IEEE 802.11a wireless LANs’, Electron. Lett., 2004, 40, (14), pp. 915916.
    7. 7)
      • 13. Bianchi, G.: ‘Performance analysis of the IEEE 802.11 distributed function’, IEEE J. Sel. Areas Commun., 2000, 18, (3), pp. 535547.
    8. 8)
    9. 9)
      • 16. Lee, J., Lee, H., Yi, Y.: ‘Making 802.11 DCF near-optimal: design, implementation, and evaluation’, IEEE/ACM Trans. Netw., 2016, 24, (3), pp. 17451758.
    10. 10)
      • 33. Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: ‘Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs’, Int. J. Commun. Syst., 2005, 18, pp. 545569.
    11. 11)
    12. 12)
      • 29. Walingo, T., Takawira, F.: ‘TCP over wireless with differentiated services’, IEEE Trans. Veh. Technol., 2004, 53, (6), pp. 19141926.
    13. 13)
      • 32. Laufer, R., Kleinrock, L.: ‘The capacity of wireless CSMA/CA networks’, IEEE/ACM Trans. Netw., 2016, 24, (3), pp. 15181532.
    14. 14)
      • 21. Kwon, H., Seo, H., Kim, S., et al: ‘Generalized CSMA/CA for OFDMA systems: protocol design, throughput analysis and implementation issues’, IEEE Trans. Wirel. Commun., 2009, 8, (8), pp. 41764187.
    15. 15)
      • 12. Zhang, C., Chen, P., Ren, J., et al: ‘A back off algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF’, Wirel. Netw., 2017, 23, (3), pp. 749758.
    16. 16)
      • 30. Jung, C.Y., Hwang, H.Y., Sung, D.K., et al: ‘Enhanced markov chain model and throughput analysis of the slotted CSMA/CA for IEEE 802.15.4 under unsaturated traffic conditions’, IEEE Trans. Veh. Technol., 2009, 58, (1), pp. 473478.
    17. 17)
      • 6. Tantra, J.W., Foh, C.H.: ‘Achieving near maximum throughput in IEEE 802.11 WLANs with contention tone’, IEEE Commun. Lett., 2006, 10, (9), pp. 658660.
    18. 18)
    19. 19)
      • 27. Hossain, E., Le, L.B., Rasti, M.: ‘Radio resource management in wireless networks: an engineering approach’ (Cambridge University Press, Cambridge, UK, 2017).
    20. 20)
      • 2. Kaur, T., Kumar, D.: ‘QoS mechanisms for MAC protocols in wireless sensor networks: a survey’, IET Commun., 2019, 13, (14), pp. 20452062.
    21. 21)
      • 17. Fitzgerald, E., Pióro, M.: ‘Performance evaluation of an intention sharing MAC scheme in wireless LANs with hidden node’. IEEE 17th Int. Symp. on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Portugal, 2016, pp. 110.
    22. 22)
    23. 23)
      • 19. Bazzi, A., Zanella, A., Masini, B.M.: ‘An OFDMA-based MAC protocol for next-generation VANETs’, IEEE Trans. Veh. Technol., 2015, 64, (9), pp. 40884100.
    24. 24)
      • 14. Bianchi, G., Fratta, L., Oliveri, M.: ‘Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LAN's’, IEEE PIMRC, Taiwan, 1996, vol. 2, pp. 392396.
    25. 25)
      • 3. Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: ‘Performance analysis of IEEE 802.11 DCF in presence of transmission errors’. IEEE Communications Society; China, Southwest Jiao Tong University, China, 2004.
    26. 26)
      • 20. Huang, K., Kang, G., Wang, H., et al: ‘An adaptive contention window algorithm to hybrid OFDMA/CSMA mechanism in WLANs’. Int. Symp. on Communications and Information Technologies (ISCIT), Australia, 2012, pp. 11711176.
    27. 27)
      • 11. Gottapu, S.B.R., Tatineni, M., Kumar, M.: ‘Performance analysis of collision alleviating distributed coordination function protocol in congested wireless networks - a Markov chain analysis’, IET Netw, 2013, 2, (4), pp. 204213.
    28. 28)
      • 34. Lee, J.M., Han, S.H., Park, H.S., et al: ‘Performance analysis of the IEEE 802.11 DCF with time-varying channel environments’, IEICE Trans. Commun., 2005, E88B, (9), pp. 37843787.
    29. 29)
      • 28. Hoang, D., IItis, A.R.: ‘Performance evaluation of multi-hop CSMA/CA networks in fading environments’, IEEE Trans. Commun., 2008, 56, (1), pp. 112125.
    30. 30)
      • 18. Dappuri, B., Venkatesh, T.G.: ‘Design and performance analysis of multichannel MAC protocol for cognitive WLAN’, IEEE Trans. Veh. Technol., 2018, 67, (6), pp. 53175330.
    31. 31)
      • 35. Samhat, A., Altman, Z., Fourestie, B.: ‘Performance analysis of the 802.11 DCF with imperfect radio conditions’. IEEE Int. Conf. on Wireless and Mobile Commns (ICWMC'06), Romania, 2006.
    32. 32)
      • 22. Ziouva, E., Antonakopoulos, T.: ‘CSMA/CA performance under high traffic conditions throughput and delay analysis’, Comput. Commun., 2002, 25, (3), pp. 313321.
    33. 33)
      • 1. Weng, E.W., Chen, H.C.: ‘The performance evaluation of IEEE 802.11 DCF using markov chain for wireless LANs’, Comput. Stand. Interfaces, 2016, 44, pp. 144149.
    34. 34)
      • 24. Tinnirello, I., Bianchi, G., Xiao, Y.: ‘Refinements on IEEE 802.11 distributed coordination function modelling approaches’, IEEE Trans. Veh. Technol., 2010, 59, (3), pp. 10551067.
    35. 35)
    36. 36)
      • 25. Dang, N.M., Hong, C.S., Lee, S.: ‘A hybrid multi-channel MAC protocol for wireless adhoc networks’, Wirel. Netw., 2015, 21, pp. 387404.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1078
Loading

Related content

content/journals/10.1049/iet-com.2019.1078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address