access icon free Distributed M-ary hypothesis testing for decision fusion in multiple-input multiple-output wireless sensor networks

In this study, the authors study binary decision fusion over a shared Rayleigh fading channel with multiple antennas at the decision fusion centre (DFC) in wireless sensor networks. Three fusion rules are derived for the DFC in the case of distributed M-ary hypothesis testing, where M is the number of hypothesis to be classified. Namely, the optimum maximum a posteriori (MAP) rule, the augmented quadratic discriminant analysis (A-QDA) rule and MAP observation bound. A comparative simulation study is carried out between the proposed fusion rules in-terms of detection performance and receiver operating characteristic (ROC) curves, where several parameters are taken into account such as the number of antennas, number of local detectors, number of hypothesis and signal-to-noise ratio. Simulation results show that the optimum (MAP) rule has better detection performance than A-QDA rule. In addition, increasing the number of antennas will improve the detection performance up to a saturation level, while increasing the number of the hypothesis will deteriorate the detection performance.

Inspec keywords: wireless sensor networks; antenna arrays; MIMO communication; linear discriminant analysis; sensor fusion; Rayleigh channels

Other keywords: binary decision fusion; comparative simulation study; decision fusion centre; multiple antennas; fusion rules; ROC curves; receiver operating characteristic curves; multiple-input multiple-output wireless sensor networks; shared Rayleigh fading channel; MAP observation bound; DFC; optimum maximum a posteriori rule; distributed M-ary hypothesis testing; signal-to-noise ratio; augmented quadratic discriminant analysis; A-QDA rule; detection performance; MAP rule

Subjects: Sensor fusion; Wireless sensor networks; Other topics in statistics; Antenna arrays; Other topics in statistics

References

    1. 1)
      • 23. Kotecha, J.H., Ramachandran, V., Sayeed, A.M.: ‘Distributed multitarget classification in wireless sensor networks’, IEEE J. Sel. Areas Commun., 2005, 23, (4), pp. 703713.
    2. 2)
      • 26. Kay, S.M.: ‘Fundamentals of statistical signal processing’ (Prentice-Hall PTR, Upper Saddle River, NJ, USA, January 1998).
    3. 3)
      • 4. Guo, X., He, Y., Atapattu, S., et al: ‘Power allocation for distributed detection systems in wireless sensor networks with limited fusion center feedback’, IEEE Trans. Wirel. Commun., 2018, 66, (10), pp. 47534766.
    4. 4)
      • 16. Banavar, M.K., Smith, A.D., Tepedelenlioglu, C., et al: ‘On the effectiveness of multiple antennas in distributed detection over fading MACs’, IEEE Trans Wirel. Commun., 2012, 11, (5), pp. 17441752.
    5. 5)
      • 9. Zhang, X., Poor, H.V., Chiang, M.: ‘Optimal power allocation for distributed detection over MIMO channels in wireless sensor networks’, IEEE Trans. Signal Process., 2008, 56, (9), pp. 41244140.
    6. 6)
      • 21. Ciuonzo, D., Romano, G., Rossi, P.S.: ‘Performance analysis of maximum ratio combining in channel-aware MIMO decision fusion’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 47164728.
    7. 7)
      • 2. Kumar, S., Zhao, F., Shepherd, D.: ‘Collaborative signal and information processing in microsensor networks’, IEEE Signal Process. Mag., 2002, 19, (2), pp. 1314.
    8. 8)
      • 6. Al-Jarrah, M.A., Al-Dweik, A., Kalil, M., et al: ‘Decision fusion in distributed cooperative wireless sensor networks’, IEEE Trans. Veh. Technol., 2019, 68, (1), pp. 797811.
    9. 9)
      • 8. Chen, B., Tong, L., Varshney, P.K.:‘Channel-aware distributed detection in wireless sensor networks’, IEEE Signal Process. Mag., 2006, 23, (5), pp. 1626.
    10. 10)
      • 12. Jamoos, A.: ‘Improved decision fusion model for wireless sensor networks over Rayleigh fading channels’, Technologies, 2017, 5, (1), pp. 13271332.
    11. 11)
      • 3. Estrin, D., Girod, L., Pottie, G., et al: ‘Instrumenting the world with wireless sensor networks’. Proc. 2001 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 2001, pp. 20332036.
    12. 12)
      • 25. Rorres, C., Zhu, X., Yuan, Y., et al: ‘Distributed m-ary hypothesis testing with binary local decisions’, Inf. Fusion, 2004, 5, (3), pp. 157167.
    13. 13)
      • 14. Ciuonzo, D., Maio, A., Rossi, P.S.: ‘A systematic framework for composite hypothesis testing of independent bernoulli trials’, IEEE Signal Process. Lett., 2015, (22), pp. 12491253.
    14. 14)
      • 18. Berger, C.R., Guerriero, M., Zhou, S., et al: ‘PAC vs. MAC for decentralized detection using noncoherent modulation’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 35623575.
    15. 15)
      • 7. Al-Jarrah, M.A., Yaseen, M.A., Al-Dweik, A., et al: ‘Decision fusion for IoT-based wireless sensor networks’, IEEE Internet Things J., 2020, 7, (2), pp. 13131326.
    16. 16)
      • 11. Hussain, B.M., Jamoos, A.: ‘Fusion of likelihood ratio test based decisions in wireless sensor networks’. Int. Conf. on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, May 2015.
    17. 17)
      • 15. Niu, R., Chen, B., Varshney, P.K.: ‘Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 10181027.
    18. 18)
      • 22. Aldalahmeh, S.A., Ghogho, M., Mclernon, D., et al: ‘Optimal fusion rule for distributed detection in clustered wireless sensor networks’. EURASIP J. Adv. Signal Process., 2016.
    19. 19)
      • 20. Ciuonzo, D., Rossi, P.S., Dey, S.: ‘Massive MIMO channel-aware decision fusion’, IEEE Trans. Signal Process., 2015, 63, (3), pp. 47164728.
    20. 20)
      • 17. Li, W., Dai, H.: ‘Distributed detection in wireless sensor networks using a multiple access channel’, IEEE Trans. Signal Process., 2007, 55, pp. 822833.
    21. 21)
      • 24. Maleki, N., Vosoughi, A.: ‘Channel-aware M-ary distributed detection: optimal and suboptimal fusion rules’. IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, MI, USA, August 2012, pp. 644647.
    22. 22)
      • 27. Lei, A., Schober, R.: ‘Coherent max-log decision fusion in wireless sensor networks’, IEEE Trans. Commun., 2010, 58, (5), pp. 13271332.
    23. 23)
      • 28. Schreier, P.J., Scharf, L.L.: ‘Statistical signal processing of complex-valued data’ (Cambridge, 2010).
    24. 24)
      • 10. Zhang, W., Zhang, Z.: ‘Belief function based decision fusion for decentralized target classification in wireless sensor networks’, Sensors, 2015, 15, (8), pp. 2052420540.
    25. 25)
      • 19. Ciuonzo, D., Romano, G., Rossi, P.S.: ‘Channel-aware decision fusion in distributed MIMO wireless sensor networks: decode-and-fuse vs. decode-then-fuse’, IEEE Trans. Wirel. Commun., 2012, 11, pp. 47164728.
    26. 26)
      • 1. Pottie, G.J., Kaiser, W.J.: ‘Wireless integrated network sensors’, Commun. ACM, 2000, 43, (5), pp. 5158.
    27. 27)
      • 13. Xiao, J., Luo, Z.: ‘Universal decentralized detection in a bandwidth-constrained sensor network’, IEEE Trans. Signal Process., 2005, (53), pp. 26172624.
    28. 28)
      • 5. Panigrahi, S.R., Bjorsell, N., Bengtsson, M.: ‘Distributed detection with non-identical wireless sensors for industrial applications’. 2019 IEEE Int. Conf. on Industrial Technology (ICIT), Melbourne, Australia, February 2019, pp. 14031408.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1053
Loading

Related content

content/journals/10.1049/iet-com.2019.1053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading