access icon free Mitigating the effect of negative link correlation on contention mechanism of MAC protocols in wireless sensor networks

The existence of link correlation has been empirically validated, and different exemplary works exploit the link correlation in the designing of various network protocols. In this work, the authors investigated the impact of this link correlation in contention mechanism of medium access control (MAC). They illustrated negative link correlation could deteriorate the contention mechanism designed to handle hidden terminal problems and, consequently, increase the packet collision rate between the neighbours. They also showed that negative link correlation could increase the chance of an exposed terminal problem. Therefore, ignoring negative link correlation could lead to overestimate overall network throughput and underestimate packet delay. Next, instead of designing a new contention mechanism exploiting the link correlation, they proposed a new routing tree which mitigates the negative effect of negative link correlation without altering the underlying MAC layer. They evaluated this routing tree on Indriya testbed with TelosB nodes and compared it to the minimum spanning tree based on link quality only. The results show improvement in end-to-end throughput and packet reception ratio at each node.

Inspec keywords: telecommunication network routing; access protocols; wireless sensor networks; telecommunication congestion control

Other keywords: overall network throughput; routing tree; MAC protocols; packet delay; medium access control protocols; network protocols; contention mechanism; TelosB nodes; Indriya testbed; packet collision rate; negative link correlation; hidden terminal problems; wireless sensor networks

Subjects: Wireless sensor networks; Communication network design, planning and routing; Protocols

References

    1. 1)
      • 18. Basalamah, A., Kim, S.M., Guo, S., et al: ‘Link correlation aware opportunistic routing’. Proc of INFOCOM'12, Orlando, Florida, USA, 2012, pp. 336340.
    2. 2)
      • 23. Sha, M., Gunatilaka, D., Wu, C., et al: ‘Empirical study and enhancements of industrial wireless sensor actuator network protocols’, IEEE Int. Things J., 2017, 4, (3), pp. 696704.
    3. 3)
      • 29. Kim, S.M., Wang, S., He, T.: ‘Exploiting spatiotemporal correlation for wireless networks under interference’, IEEE/ACM Trans. Netw., 2017, 25, (5), pp. 31323145.
    4. 4)
      • 7. Wen-miao, S., Yan-ming, L., Shu-e, Z.: ‘Research on SMAC protocol for WSN’. Proc. 4th Int. Conf. on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008.
    5. 5)
      • 3. Srinivasan, K., Jain, M., Choi, J.I., et al: ‘The κ factor: inferring protocol performance using inter-link reception correlation’. Proc. 16th Annual Int. Conf. on Mobile Computing and Networking, Chicago, Illinois, USA, 2010, pp. 317328.
    6. 6)
      • 11. Elhabyan, R., Shi, W., St-Hilaire, M.: ‘Coverage protocols for wireless sensor networks: review and future directions’, J. Commun. Netw., 2019, 21, (1), pp. 4560.
    7. 7)
      • 24. Zhang, Z., Mehmood, A., Shu, L., et al: ‘A survey on fault diagnosis in wireless sensor networksls’, IEEE Access, 2018, 6, pp. 1134911364.
    8. 8)
      • 13. Kim, S.M., Wang, S., He, T.: ‘Exploiting causes and effects of wireless link correlation for better performance’. Proc. of INFOCOM'15, Hong Kong, 2015, pp. 379387.
    9. 9)
      • 25. Gungor, V.C., Lambert, F.C.: ‘A survey on communication networks for electric system automation’, Comput. Netw., 2006, 50, (7), pp. 877897.
    10. 10)
      • 2. Zhu, T., Zhong, Z., He, T., et al: ‘Exploring link correlation for efficient flooding in wireless sensor networks’. Proc. 7th USENIX Conf. on Networked Systems Design and Implementation, San Jose, CA, USA, 2010, pp. 44.
    11. 11)
      • 5. Ye, W., Heidemann, J., Estrin, D.: ‘Medium access control with coordinated adaptive sleeping for wireless sensor networks’, IEEE Trans. Netw., 2004, 12, (3), pp. 493506.
    12. 12)
      • 1. Ren, Q., Liang, Q.: ‘A contention-based energy-efficient MAC protocol for wireless sensor networks’. Proc. IEEE Wireless Communications and Networking Conf., Las Vegas, Nevada USA2006, pp. 11541159.
    13. 13)
      • 26. Omer Farooq, M., Kunz, T.: ‘Contiki-based IEEE 802.15.4 channel capacity estimation and suitability of its CSMA-CA MAC layer protocol for real-time multimedia applications’, Mobile Inf. Syst., 2015, 2015, p. 9.
    14. 14)
      • 12. Zhao, Z., Dong, W., Bu, J., et al: ‘Link-correlation-aware data dissemination in wireless sensor networks’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 57475757.
    15. 15)
      • 14. Zhu, T., Zhong, Z., He, T., et al: ‘Achieving efficient flooding by utilizing link correlation in wireless networks’, IEEE/ACM Trans. Netw. (TON), 2013, 21, (1), pp. 121134.
    16. 16)
      • 6. Dam, T., Langendoen, K.: ‘An adaptive energy-efficient MAC for wireless sensor network’. Proc. 1st Int. Conf. on Embedded Networked Sensor Systems (SenSys), Los Angeles, California, USA, 2003, pp. 14.
    17. 17)
      • 21. Jun, J., Cheng, L., He, L., et al: ‘Exploiting sender-based link correlation in wireless sensor networks’. Proc. IEEE 22nd Int. Conf. on Network Protocols, North Carolina, 2014, pp. 445455.
    18. 18)
      • 9. Wang, L., Wu, K., Hamdi, M.: ‘Combating hidden and exposed terminal problems in wireless networks’, IEEE Trans. Wirel. Commun., 2012, 11, (11), pp. 42044213, doi: 10.1109/TWC.2012.092712.120628.
    19. 19)
      • 8. Bharghavan, V., Demers, A., Shenker, S., et al: ‘MACAW: a media access protocol for wireless LAN's’. Proc. of Conf. on Communications Architectures Protocols and Applications, London, United Kingdom, 1994, pp. 212225.
    20. 20)
      • 20. Liu, W., Liu, Y., Zhong, Z., et al: ‘Exploiting ephemeral link correlation for mobile wireless networks’. Proc. 10th ACM Conf. on Embedded Network Sensor Systems, Toranto, Canada, 2012, pp. 239252.
    21. 21)
      • 10. Doddavenkatappa, M., Choon Chan, M., Ananda, A.L.: ‘Indriya: a low-cost, 3D wireless sensor network testbed’. Springer Testbeds and Research Infrastructure. Development of Networks and Communities, Thessanoliki, Greece, 2012, pp. 302316.
    22. 22)
      • 19. Lin, C.-Y., Tseng, Y.-C., Lai, T.H.: ‘Exploiting spatial correlation at the link layer for event-driven sensor networks’, Int'l. J. Sensor Netw., 2012, 12, (1), pp. 115.
    23. 23)
      • 27. Osterlind, F., Dunkels, A.: ‘Contiki COOJA hands-on crash course: Session notes’.
    24. 24)
      • 17. Wang, S., Kim, S.M., Liu, Y., et al: ‘CorLayer: a transparent link correlation layer for energy efficient broadcast’. Proc. of the 19th Annual Int. Conf. on Mobile Computing and Networking, Miami, Florida, USA, 2013, pp. 5162.
    25. 25)
      • 15. Zhao, Z., Xu, X., Dong, W., et al: ‘An accurate link correlation estimator for improving wireless protocol performance’, Sensors (Basel, Switzerland), 2018, 15, (2), pp. 42734290.
    26. 26)
      • 16. Shuo, G., Kim, S.M., Zhu, T., et al: ‘Correlated flooding in low-duty-cycle wireless sensor networks’. Proc. 19th IEEE Int. Conf. on Network Protocols, Vancouver, Canada, 2011, pp. 383392.
    27. 27)
      • 22. Gomes, R., Queiroz, D., Filho, A., et al: ‘Real-time link quality estimation for industrial wireless sensor networks using dedicated nodes’, Ad Hoc Netw., 2017, 59, (2), pp. 116133.
    28. 28)
      • 4. Rhee, I., Warrier, A., Aia, M., et al: ‘Z-MAC: a hybrid MAC for wireless sensor networks’, IEEE/ACM Trans. Netw., 2008, 16, (3), pp. 511524.
    29. 29)
      • 28. De Couto, D.S.J., Aguayo, D., Bicket, J., et al: ‘A highthroughput path metric for multi-hop wireless routing’. Proc. MobiCom, San Diego, California, 2003, pp. 419434.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0947
Loading

Related content

content/journals/10.1049/iet-com.2019.0947
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading