access icon free Secure full duplex OFDM wireless communication based on phase relay between the legitimate nodes

This study proposes a scheme to realise secure orthogonal frequency-division multiplexing (OFDM) wireless communication between two full duplex nodes—node A and node B. If node A wants to send secret messages to node B, node A and node B transmit the training signal to each other to acquire channel state information (CSI) in the first time frame. Node A acquires the phases of the received signal from node B (no need to decode). In the second time frame, node A then sends secret messages to node B with the phases of the modulated signal being added to the random phases of the signal from node B in the previous time frame, i.e node A relaying the phases of the signal from node B. Node B can recover the secret messages from node A, but eavesdroppers cannot because they do not know the CSI of the main channel. The secrecy capacity is irrelevant to the CSI of the eavesdropper channel, which is a big advantage over other schemes. The scheme can guarantee secrecy capacity to be positive in all circumstances and work well for single-input single-output systems. A computation efficient algorithm is presented to optimally allocate power over sub-carriers for secrecy capacity maximisation.

Inspec keywords: telecommunication security; relay networks (telecommunication); wireless channels; OFDM modulation; random processes; optimisation

Other keywords: random phases; optimal power allocation; legitimate nodes; secret messages; received signal; modulated signal; training signal; eavesdropper channel; full duplex nodes; secrecy capacity maximisation; phase relay; secure orthogonal frequency-division multiplexing wireless communication; previous time frame; single-input single-output systems; channel state information; secure full duplex OFDM wireless communication; CSI

Subjects: Radio links and equipment; Other topics in statistics; Modulation and coding methods; Optimisation techniques

References

    1. 1)
      • 17. Wang, L., Cai, Y., Zou, Y., et al: ‘Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 62596274.
    2. 2)
      • 5. Negi, R., Goel, S.: ‘Secret communication using artificial noise’. Proc. VTC Fall, Dallas, TX, USA, 2005, vol. 3, 19061910.
    3. 3)
      • 31. Goldsmith, A.: ‘Wireless communications. cambridge’ (Cambridge University Press, UK, 2005).
    4. 4)
      • 26. Li, W., Ghogho, M., Chen, B., et al: ‘Secure communication via sending artificial noise by the receiver: outage secrecy capacity/region analysis’, IEEE Commun. Lett., 2012, 16, (10), pp. 16281631.
    5. 5)
      • 15. Krikidis, I., Thompson, J., Mclaughlin, S.: ‘Relay selection for secure cooperative networks with jamming’, IEEE Trans. Wirel. Commun., 2009, 8, (10), pp. 50035011, doi: 10.1109/TWC.2009.090323.
    6. 6)
      • 28. Zhou, Y., Xiang, Z., Zhu, Y., et al: ‘Application of full-duplex wireless technique into secure MIMO communication: achievable secrecy rate based optimization’, IEEE Signal Process. Lett., 2014, 21, (7), pp. 804808.
    7. 7)
      • 24. Shafie, A., Ding, Z., Dhahir, N.: ‘Hybrid spatio-temporal artificial noise design for secure MIMOME-OFDM systems’, IEEE Trans. Veh. Technol., 2016, 66, (5), pp. 38713886.
    8. 8)
    9. 9)
      • 23. Soltani, M., Baykas, T., Arslan, H.: ‘Achieving secure communication through pilot manipulation’. Proc. IEEE 26th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Hong Kong, China, 2015, pp. 527531.
    10. 10)
      • 10. Zheng, G., Choo, L., Wong, K.: ‘Optimal cooperative jamming to enhance physical layer security using relays’, IEEE Trans. Signal Process., 2011, 59, (3), pp. 13171322.
    11. 11)
      • 12. Yang, Y., Chen, J., Huang, Y., et al: ‘Secure transmission of wireless relaying systems with jammer and multiple-user selection’, IEEE Access, 2017, 5, pp. 87718779.
    12. 12)
      • 6. Goel, S., Negi, R.: ‘Secret communication in presence of colluding eavesdroppers’. Proc. MILCOM, Atlantic City, NJ, USA, 2005, vol. 3, 15011506.
    13. 13)
      • 18. Yang, J., Salari, S., Kim, I., et al: ‘Asymptotically optimal cooperative jamming for physical layer security’, J. Commun. Netw., 2016, 18, (1), pp. 8494.
    14. 14)
      • 20. Lai, K., Lei, J., Wen, L., et al: ‘Secure transmission with randomized constellation rotation for downlink sparse code multiple access system’, IEEE Access, 2018, 6, pp. 50495063.
    15. 15)
      • 33. Vo, T., Amis, K., Chonavel, T., et al: ‘A computationally efficient discrete bit-loading algorithm for OFDM systems subject to spectral-compatibility limits’, IEEE Trans. Commun., 2015, 63, (6), pp. 22612272.
    16. 16)
      • 7. Goel, S., Negi, R.: ‘Guaranteeing secrecy using artificial noise’, IEEE Trans. Wirel, Commun., 2008, 7, (6), pp. 21802189.
    17. 17)
      • 32. Krongold, B., Ramchandran, K., Jones, D.: ‘Computationally efficient optimal power allocation algorithms for multicarrier communication systems’, IEEE Trans. Commun., 2000, 48, (1), pp. 2327.
    18. 18)
      • 29. Mobini, Z., Mohammadi, M., Tellambura, C.: ‘Wireless-powered full-duplex relay and friendly jamming for secure cooperative communications’, IEEE Trans. Inf. Forensics Secur., 2019, 14, (3), pp. 621634.
    19. 19)
      • 30. Kong, Z., Yang, S., Wang, D., et al: ‘Robust beamforming and jamming for enhancing the physical layer security of full duplex radios’, IEEE Trans. Inf. Forensics Secur., 2019, 14, (12), pp. 31513159.
    20. 20)
      • 9. Dong, L., Han, Z., Petropulu, A., et al: ‘Improving wireless physical layer security via cooperating relays’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 18751888.
    21. 21)
      • 1. Shannon, C.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    22. 22)
      • 11. Vilela, J., Bloch, M., Barros, J., et al: ‘Wireless secrecy regions with friendly jamming’, IEEE Trans. Inf. Forensics Secur., 2011, 6, (2), pp. 256266.
    23. 23)
      • 19. Guo, H., Yang, Z., Zhang, L., et al: ‘Joint cooperative beamforming and jamming for physical-layer security of decode-and-forward relay networks’, IEEE Access, 2017, 5, pp. 1962019630.
    24. 24)
      • 25. Bharadia, D., McMilin, E., Katti, S.: ‘Full duplex radios’. Proc. ACM SIGCOMM, Hong Kong, China, pp. 375386.
    25. 25)
      • 21. Ma, R., Dai, L., Wang, Z., et al: ‘Secure communication in TDS-OFDM system using constellation rotation and noise insertion’, IEEE Trans. Consum. Electron., 2010, 56, (3), pp. 13281332.
    26. 26)
      • 4. Mukherjee, A., Fakoorian, S., Huang, J., et al: ‘Principles of physical layer security in multiuser wireless networks: a survey’, IEEE Commun. Surv. Tutor., 2014, 16, (3), pp. 15501573.
    27. 27)
      • 22. Renna, F., Laurenti, N., Poor, H.: ‘Physical-layer secrecy for OFDM transmissions over fading channels’, IEEE Trans. Inf. Forensics Secur., 2012, 7, (4), pp. 13541367.
    28. 28)
      • 2. Wyner, A.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    29. 29)
      • 8. Swindlehurst, A.: ‘Fixed SINR solutions for the MIMO wiretap channel’. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Taiwan, 2009, pp. 24372440.
    30. 30)
      • 27. Zheng, G., Krikidis, I., Li, J., et al: ‘Improving physical layer secrecy using full-duplex jamming receivers’, IEEE Trans. Signal Process., 2013, 61, (20), pp. 49624974.
    31. 31)
      • 16. Chen, J., Zhang, R., Song, L., et al: ‘Joint relay and jammer selection for secure two-way relay networks’, IEEE Trans. Inf. Forensics Secur., 2012, 7, (1), pp. 310320.
    32. 32)
      • 13. Li, B., Zou, Y., Zhou, J., et al: ‘Secrecy outage probability analysis of friendly jammer selection aided multiuser scheduling for wireless networks’, IEEE Trans. Commun., 2019, 67, (5), pp. 34823495.
    33. 33)
      • 3. Csiszar, I., Korner, J.: ‘Broadcast channels with confidential messages’, IEEE Trans. Inf. Theory, 1978, 24, (3), pp. 339348.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0916
Loading

Related content

content/journals/10.1049/iet-com.2019.0916
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading