access icon free Improved likelihood ratio statistic-based cooperative spectrum sensing for cognitive radio

Cooperative spectrum sensing (CSS) is a technique where multiple cognitive radio users cooperate among themselves to make binary decisions about the presence of a primary user. The single cognitive user often faces the hidden terminal problem. However, CSS tackles this problem by sending local sensing-based decisions to the fusion centre. A major drawback of conventional energy detection is the poor performance at low SNR regime. In this work, likelihood ratio statistics is considered as a test-statistic due to its highest statistical power. An improved likelihood ratio statistic-based CSS scheme is proposed by considering several past sensing events. The proposed scheme mitigates the poor detection at low SNR regime and misdetections arising due to sudden drops in signal energy. Furthermore, the generalised Byzantine attack is taken into account considering a security aspect. The proposed scheme is also shown to outperform Anderson Darling-based malicious user detection in CSS at a low SNR regime. The proposed scheme is verified and validated over empirical spectrum data. The performance improvement is at the cost of computational time, which in practice is very low and is justified by the significant performance improvements of the proposed scheme at low SNR regime.

Inspec keywords: cooperative communication; signal detection; telecommunication security; cognitive radio; radio spectrum management

Other keywords: outperform Anderson Darling-based malicious user detection; multiple cognitive radio users; binary decisions; poor detection; empirical spectrum data; likelihood ratio statistics; sensing performance; hidden terminal problem; signal energy; low signal-to-noise ratio; low SNR regime; spectrum sensing; single cognitive user; highest statistical power; sensing events; likelihood ratio statistic-based sensing; conventional energy detection; test-statistic; improved likelihood ratio statistic-based CSS scheme; local sensing-based decisions; primary user

Subjects: Other topics in statistics; Other topics in statistics; Signal detection; Radio links and equipment

References

    1. 1)
      • 37. López Ḃenítez, M., Casadevall, F., Martella, C.: ‘Performance of spectrum sensing for cognitive radio based on field measurements of various radio technologies’. European Wireless Conf. (EW), Lucca, Italy, 2010, pp. 969977.
    2. 2)
      • 18. Gul, N., Qureshi, I.M., Naveed, A., et al: ‘Secured soft combination schemes against malicious-users in cooperative spectrum sensing’, Wirel. Pers. Commun., 2019, pp. 108, (1), 389408.
    3. 3)
      • 16. Noh, G., Lim, S., Lee, S., et al: ‘Goodness-of-fit-based malicious user detection in cooperative spectrum sensing’. Proc. IEEE Vehicular Technology Conf. (VTC-Fall), Quebec, Canada, 2012, pp. 15.
    4. 4)
      • 22. Nguyen Thanh, N., Kieu Xuan, T., Koo, I.: ‘Comments and corrections comments on ‘spectrum sensing in cognitive radio using goodness-of-fit testing’, IEEE Trans. Wirel. Commun., 2012, 11, (10), pp. 34093411.
    5. 5)
      • 1. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201220.
    6. 6)
      • 31. Digham, F.F., Alouini, M.S., Simon, M.K.: ‘On the energy detection of unknown signals over fading channels’, IEEE Trans. Commun., 2007, 55, (1), pp. 2124.
    7. 7)
      • 5. Urkowitz, H.: ‘Energy detection of unknown deterministic signals’, Proc. IEEE, 1967, 55, (4), pp. 523531.
    8. 8)
      • 28. Blackard, K.L., Rappaport, T.S., Bostian, C.W.: ‘Measurements and models of radio frequency impulsive noise for indoor wireless communications’, IEEE J. Sel. Areas commun., 1993, 11, (7), pp. 9911001.
    9. 9)
      • 27. Bera, D., Chakrabarti, I., Pathak, S.S., et al: ‘Another look in the analysis of cooperative spectrum sensing over nakagami- m fading channels’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 856871.
    10. 10)
      • 7. Wang, H., Yang, E.H., Zhao, Z., et al: ‘Spectrum sensing in cognitive radio using goodness of fit testing’, IEEE Trans. Wirel. Commun., 2009, 8, (11), pp. 54275430.
    11. 11)
      • 34. Zwillinger, D.: ‘Table of integrals series and products’ (Academic Press, 2014, 8th edn.).
    12. 12)
      • 35. Anderson, T.W., Darling, D.A.: ‘Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes’, Ann. Math. Stat., 1952, 23, (2), pp. 193212.
    13. 13)
      • 2. Chen, Y., Oh, H.S.: ‘A survey of measurement-based spectrum occupancy modeling for cognitive radios’, IEEE Commun. Surv. Tutor., 2016, 18, (1), pp. 848859.
    14. 14)
      • 9. Letaief, K.B., Zhang, W.: ‘Cooperative communications for cognitive radio networks’, Proc. IEEE, 2009, 97, (5), pp. 878893.
    15. 15)
      • 8. Patel, D.K., Trivedi, Y.N.: ‘LRS-G2 based non-parametric spectrum sensing for cognitive radio’. Proc. 11th Int. Conf. on Cognitive Radio Oriented Wireless Networks (CROWNCOM), Grenoble, France, 2016, pp. 330341.
    16. 16)
      • 10. Sendonaris, A., Erkip, E., Aazhang, B.: ‘User cooperation diversity. Part I. System description’, IEEE Trans. Commun., 2003, 51, (11), pp. 19271938.
    17. 17)
      • 14. Sahai, A., Hoven, N., Tundra, R.: ‘Some fundamental limits on cognitive radio’. Proc. Allerton Conf., Monticello, October 2004, pp. 131136.
    18. 18)
      • 33. Zhang, J., Wu, Y.: ‘Likelihood-ratio tests for normality’, Comput. Stat. Data Anal., 2005, 49, (3), pp. 709721.
    19. 19)
      • 12. Atapattu, S., Tellambura, C., Jiang, H.: ‘Energy detection based cooperative spectrum sensing in cognitive radio networks’, IEEE Trans. Wirel. Commun., 2011, 10, (4), pp. 12321241.
    20. 20)
      • 13. Singh, A., Bhatnagar, M.R., Mallik, R.K.: ‘Cooperative spectrum sensing with an improved energy detector in cognitive radio network’. Proc. IEEE National Conf. on Communications (NCC), Bangalore, India, 2011, pp. 15.
    21. 21)
      • 26. Yarkan, S., Toreyin, B.U., Qaraqe, K.A., et al: ‘An online adaptive cooperation scheme for spectrum sensing based on a second-order statistical method’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 675686.
    22. 22)
      • 29. Patel, D.K., Trivedi, Y.N.: ‘Goodness-of-fit-based non-parametric spectrum sensing under middleton noise for cognitive radio’, Electron. Lett., 2015, 51, (5), pp. 419421.
    23. 23)
      • 24. Arshad, K., Moessner, K.: ‘Robust spectrum sensing based on statistical tests’, IET Commun., 2013, 7, (9), pp. 808817.
    24. 24)
      • 21. Wu, J., Song, T., Yu, Y., et al: ‘Sequential cooperative spectrum sensing in the presence of dynamic byzantine attack for mobile networks’, PloS One, 2018, 13, (7), p. e0199546.
    25. 25)
      • 32. Cressie, N., Read, T.R.: ‘Multinomial goodness-of-fit tests’, J. R. Stat. Soc. Ser. B Methodol., 1984, pp. 46, (3), pp. 440464.
    26. 26)
      • 25. Li, L., Hou, S., Anderson, A.L.: ‘Kernelized generalized likelihood ratio test for spectrum sensing in cognitive radio’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 67616773.
    27. 27)
      • 11. Cabric, D., Mishra, S.M., Brodersen, R.W.: ‘IEEE: ‘Implementation issues in spectrum sensing for cognitive radios’. 2004 Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals Systems and Computers, vol. 1, 2004, pp. 772776.
    28. 28)
      • 23. Teguig, D., Nir, V.L., Scheers, B.: ‘Spectrum sensing method based on likelihood ratio goodness-of-fit test’, IET Electron. Lett., 2015, 51, (3), pp. 253255.
    29. 29)
      • 20. Wu, J., Song, T., Yu, Y., et al: ‘Generalized byzantine attack and defense in cooperative spectrum sensing for cognitive radio networks’, IEEE Access, 2018, 6, pp. 5327253286.
    30. 30)
      • 3. Mitola, J., Maguire, G.Q.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun., 1999, 6, (4), pp. 1318.
    31. 31)
      • 19. Qin, Z., Gao, Y., Plumbley, M.D.: ‘Malicious user detection based on low-rank matrix completion in wideband spectrum sensing’, IEEE Trans. Signal Process., 2018, 66, (1), pp. 517.
    32. 32)
      • 38. Wellens, M., Mähönen, P.: ‘Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model’, Mob. Netw. Appl., 2010, 15, (3), pp. 461474.
    33. 33)
      • 30. Middleton, D.: ‘Non-Gaussian noise models in signal processing for telecommunications: new methods an results for class a and class b noise models’, IEEE Trans. Inf. Theory, 1999, 45, (4), pp. 11291149.
    34. 34)
      • 17. Wang, J., Chen, I.R., Tsai, J.J.P., et al: ‘Trust-based mechanism design for cooperative spectrum sensing in cognitive radio networks’, Comput. Commun., 2018, 116, pp. 90100.
    35. 35)
      • 6. López Bentez, M., Casadevall, F.: ‘Improved energy detection spectrum sensing for cognitive radio’, IET Commun., 2012, 6, pp. 785796.
    36. 36)
      • 15. Chen, C., Song, M., Xin, C., et al: ‘A robust malicious user detection scheme in cooperative spectrum sensing’. Proc. IEEE Global Communications Conf. (GLOBECOM), California, USA, 2012, pp. 48564861.
    37. 37)
      • 4. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116130.
    38. 38)
      • 36. Kvam, P.H., Vidakovic, B.: ‘Nonparametric statistics with applications to science and engineering’, vol. 653, (John Wiley & Sons, Lucca, Italy, 2007).
    39. 39)
      • 39. López Benítez, M., Casadevall, F.: ‘Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio’, Trans. Emerg. Telecommun. Technol., 2010, 21, (8), pp. 680693.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0862
Loading

Related content

content/journals/10.1049/iet-com.2019.0862
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading