Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance analysis of discrete wavelet transform for downlink non-orthogonal multiple access in 5G networks

Non-orthogonal multiple access (NOMA) has been considered a key technology to address the increasing traffic demands for fifth-generation (5G) cellular wireless communication networks and internet of things. The NOMA technique offers efficient bandwidth utilisation, low latency, and support for the massive connectivity of devices in 5G networks. In the conventional NOMA system, orthogonal frequency division multiplexing (OFDM) is used as a pulse-shaping technique that causes high peak to average power ratio (PAPR) due to the superposition of signals of multiple users after passing through inverse fast Fourier transform and spectral inefficiency due to the cyclic prefix insertion. Therefore, an alternate methodology using wavelet OFDM is proposed in this research work, as a pulse-shaping technique for NOMA-based communication systems to improve spectral efficiency and system capacity The main contribution of this study is the analysis of the bit error rate (BER) performance and the effect of carrier frequency offset on system performance of wavelet NOMA (W-NOMA) technique in 5G networks. The simulation results demonstrate that W-NOMA outperforms the conventional NOMA with reference to PAPR and BER.

References

    1. 1)
      • 25. Yang, Z., Ding, Z., Fan, P., et al: ‘On the performance of non-orthogonal multiple access systems with partial channel information’, IEEE Trans. Commun., 2016, 64, (2), pp. 654667.
    2. 2)
      • 42. Koga, H., Kodama, N., Konishi, T., et al: ‘High-speed power line communication system based on wavelet OFDM’. Proc. ISPLC, Kyoto, Japan, 26 March 2003, pp. 226231.
    3. 3)
      • 32. Armstrong, J.: ‘Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering’, Electron. Lett., 2002, 38, (5), pp. 246247.
    4. 4)
      • 41. Lin, H., Siohan, P.: ‘Major 5G waveform candidates: overview and comparison’, in ‘Signal processing for 5G: algorithms and implementations’ (John Wiley and Sons, 2016), pp. 170187.
    5. 5)
      • 52. Bazin, S., Naeiny, M.F.: ‘Burst transmission symbol synchronization in the presence of cycle slip arising from different clock frequencies’, EURASIP J. Adv. Signal Process., 2018, 1, pp. 111.
    6. 6)
      • 11. Khan, A., Khan, S., Baig, S., et al: ‘Wavelet OFDM with overlap FDE for non-Gaussian channels in precoded NOMA based systems’, Future Gener. Comput. Syst., 2019, 97, pp. 165179.
    7. 7)
      • 8. Banelli, P., Buzzi, S., Colavolpe, G., et al: ‘Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency’, IEEE Signal Process. Mag., 2014, 31, (6), pp. 8093.
    8. 8)
      • 31. Lin, Y.W., Lee, C.Y.: ‘Design of an FFT/IFFT processor for MIMO OFDM systems’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (4), pp. 807815.
    9. 9)
      • 2. Dai, L., Wang, B., Yuan, Y., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Commun. Mag., 2015, 53, (9), pp. 7481.
    10. 10)
      • 15. Khan, A., Shin, S.Y.: ‘Linear precoding techniques for OFDM-based NOMA over frequency-selective fading channels’, IETE J. Res., 2017, 63, (4), pp. 536551.
    11. 11)
      • 5. Aghababaiyan, K., Maham, B.: ‘Downlink radio resource allocation in OFDMA-based small cells networks’. 2017 IEEE Int. Black Sea Conf. on Communications and Networking (BlackSeaCom), Istanbul, Turkey, 2017, pp. 15.
    12. 12)
      • 34. Rappaport, T.S.: ‘Wireless communications-principles and practice’ (Pearson Education, USA, 2002, 1st edn. 2002).
    13. 13)
      • 35. Yan, C., Harada, A., Benjebbour, A., et al: ‘Receiver design for downlink non-orthogonal multiple access (NOMA)’. Proc. Vehicular Technology Conf. (VTC Spring), Glasgow, UK, 2015, pp. 16.
    14. 14)
      • 7. Baig, S., Ali, U., Asif, H.M., et al: ‘Closed-form BER expression for Fourier and wavelet transform-based pulse-shaped data in downlink NOMA’, IEEE Commun. Lett., 2019, 23, (4), pp. 592595.
    15. 15)
      • 19. Wang, B., Wang, K., Lu, Z., et al: ‘Comparison study of non-orthogonal multiple access schemes for 5G’. Proc. IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting, Ghent, 2015, pp. 15.
    16. 16)
      • 51. Pollet, T., Van Bladel, M., Moeneclaey, M.: ‘BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise’, IEEE Trans. Commun., 1995, 43, (234), pp. 191193.
    17. 17)
      • 17. Wang, P., Xiao, J., Ping, L.: ‘Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems’, IEEE Veh. Technol. Mag., 2006, 1, (3), pp. 411.
    18. 18)
      • 39. Galli, S., Koga, H., Kodama, N.: ‘Advanced signal processing for PLCs: wavelet-OFDM. In power line communications and its applications’. Proc. ISPLC. IEEE Int. Symp., Jeju City, South Korea, 2008, pp. 187192.
    19. 19)
      • 26. Saito, Y., Kishiyama, Y., Benjebbour, A., et al: ‘Non-orthogonal multiple access (NOMA) for cellular future radio access’. Proc. IEEE 77th Vehicular Technology Conf., Dresden, Germany, 2013, pp. 15.
    20. 20)
      • 27. Otao, N., Kishiyama, Y., Higuchi, K.: ‘Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation’. Proc. IEEE Int. Symp. on Wireless Communication Systems, Paris, France, 2012, pp. 476480.
    21. 21)
      • 6. Yassin, M., Lahoud, S., Ibrahim, M., et al: ‘Cooperative resource management and power allocation for multiuser OFDMA networks’, IET Commun., 2017, 11, (16), pp. 25522559.
    22. 22)
      • 29. Khan, A., Shin, S.Y.: ‘Wavelet OFDM-based non-orthogonal multiple access downlink transceiver for future radio access’, IETE Tech. Rev., 2018, 35, (1), pp. 1727.
    23. 23)
      • 13. Deshmukh, A., Bodhe, S.: ‘Comparison of DCT and wavelet based OFDM system working in 60 GHZ band’, Int. J. Adv. Technol., 2012, 3, (2), pp. 7483.
    24. 24)
      • 12. Kumbasar, V., Kucur, O.: ‘Performance comparison of wavelet based and conventional OFDM systems in multipath Rayleigh fading channels’, Digit. Signal Process., 2012, 22, (5), pp. 841846.
    25. 25)
      • 37. Qizheng, G.: ‘RF system design of transceivers for wireless communications’ (Springer, New York, NY, 2005).
    26. 26)
      • 18. Benjebbour, A., Saito, Y., Kishiyama, Y., et al: ‘Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access’. Proc. Int. Symp. on Intelligent Signal Processing and Communication Systems, Naha, 2013, pp. 770774.
    27. 27)
      • 40. Tao, Y., Liu, L., Liu, S., et al: ‘A survey: several technologies of non-orthogonal transmission for 5G’, China Commun., 2015, 12, (10), pp. 115.
    28. 28)
      • 3. Andrews, J., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    29. 29)
      • 43. Nawaz, T., Baig, S.: ‘Wavelet OFDM-A solution for reliable communication in a frequency selective Rayleigh fading channel’. Proc. Int. Bhurban Conf. on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 2012, pp. 413417.
    30. 30)
      • 10. Nikookar, H.: ‘Wavelet radio: adaptive and reconfigurable wireless systems based on wavelets’ (Cambridge University Press, 2013).
    31. 31)
      • 44. Oltean, M., Nafornita, M.: ‘Wavelet OFDM performance in frequency selective fading channels’. Proc. Int. Conf. on Communications (COMM), Bucharest, Romania, 2010, pp. 343346.
    32. 32)
      • 4. Aghababaiyan, K., Maham, B.: ‘QoS-aware downlink radio resource management in OFDMA-based small cells networks’, IET Commun., 2017, 12, (4), pp. 441448.
    33. 33)
      • 1. Akyildiz, I.F., Nie, S., Lin, S.-C., et al: ‘5G roadmap: 10 key enabling technologies’, Comput. Netw., 2016, 106, pp. 1748.
    34. 34)
      • 14. Higuchi, K., Benjebbour, A.: ‘Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access’, IEICE Trans. Commun., 2015, 98, (3), pp. 403414.
    35. 35)
      • 48. Vetterli, M., Kovacevic, J.: ‘Wavelets and subband coding’ (Prentice Hall PTR, Englewood Cliffs, NJ, 1995).
    36. 36)
      • 21. Tabassum, H., Ali, M., Hossain, E., et al: ‘Non orthogonal multiple access (NOMA) in cellular uplink and downlink: challenges and enabling techniques’. arXiv preprint arXiv:1608.05783, 2016.
    37. 37)
      • 30. Goldsmith, A.: ‘Wireless communication’ (Cambridge University Press, New York, 2005).
    38. 38)
      • 22. Sun, Q., Han, S., Chin-Lin, I., Pan, Z.: ‘Energy efficiency optimization for fading MIMO non-orthogonal multiple access systems’. Proc. IEEE Int. Conf. on Communications (ICC), London, 2015, pp. 26682673.
    39. 39)
      • 16. Shen, Q., Zhao, Y.R.: ‘Research on the development of future wireless network’, Adv. Mater. Res., 2012, 433, pp. 578583.
    40. 40)
      • 38. Xiong, X., Xiang, W., Zheng, K., et al: ‘An open source SDR-based NOMA system for 5G networks’, IEEE Wirel. Commun., 2015, 22, (6), pp. 2432.
    41. 41)
      • 46. Weeks, M.: ‘Digital signal processing using Matlab and wavelets’ (Infinity Science Press, Hingham, 2007).
    42. 42)
      • 45. Nawaz, T., Khan, A., Baig, S.: ‘Evolution of orthogonal frequency division multiplexing modulation to discrete wavelet multitone’. Proc. Int. Conf. on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 2011, pp. 6368.
    43. 43)
      • 24. Xu, P., Ding, Z., Dai, X., et al: ‘A new evaluation criterion for non orthogonal multiple access in 5G software defined networks’, IEEE Access, 2015, 3, pp. 16331639.
    44. 44)
      • 36. Vihriala, J., Lahetkangas, E., Pajukoski, K., et al: ‘On the waveforms for 5G mobile broadband communications’. Proc. IEEE 81st Vehicular Technology Conf., Glasgow, 2015, pp. 15.
    45. 45)
      • 9. Farhang-Boroujeny, B.: ‘OFDM versus filter bank multicarrier’, IEEE Signal Process. Mag., 2011, 28, (3), pp. 92112.
    46. 46)
      • 49. Jones, W.W.: ‘A unified approach to orthogonally multiplexed communication using wavelet bases and digital filter banks’. Ph.D. dissertation, Coll. Eng. Technol., Ohio University, Athens, OH, 1994.
    47. 47)
      • 47. Baig, S., Rehman, F., Mughal, M.J.: ‘Performance comparison of DFT, discrete wavelet packet and wavelet transforms, in an OFDM transceiver for multipath fading channel’. Proc. Int. Multi-topic Conf. IEEE (INMIC), 2005, pp. 16.
    48. 48)
      • 28. Hojeij, M.R., Farah, J., Nour, C., et al: ‘Resource allocation in downlink non-orthogonal multiple access (NOMA) for future radio access’. Proc. IEEE Vehicular Technology Conf., Glasgow, Scotland, 2015, pp. 16.
    49. 49)
      • 23. Chen, Z., Ding, Z., Dai, X., et al: ‘An optimization perspective of the superiority of NOMA compared to conventional OMA’, IEEE Trans. Signal Process., 2017, 65, (19), pp. 51915202.
    50. 50)
      • 20. Al-Imari, M., Xiao, P., Imran, M.A., et al: ‘Uplink non-orthogonal multiple access for 5G wireless networks’. Proc. 11th Int. Symp. on Wireless Communications Systems (ISWCS), Barcelona, 2014, pp. 781785.
    51. 51)
      • 50. Chen, X., Yin, H., Wei, G.: ‘Impact of frequency offset on the performance of uplink OFDM-NOMA systems’. 2018 IEEE 4th Int. Conf. on Computer and Communications (ICCC), 2018, pp. 168173.
    52. 52)
      • 33. Nawaz, T., Baig, S., Khan, A.: ‘The performance comparison of coded WP-OFDM and DFT–OFDM in frequency selective Rayleigh fading channel’, Int. J. Commun. Antenna Propag., 2011, 1, (6), pp. 500505.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0851
Loading

Related content

content/journals/10.1049/iet-com.2019.0851
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address