Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance evaluation and security analysis of ground-to-satellite FSO system with CV-QKD protocol

This study evaluates the performance of a secure ground-to-satellite free-space optical (FSO) system using a bipolar pulse amplitude modulation over modulated gamma fading channel. A closed-form expression is derived for the joint probability of a satellite-based continuous-variable quantum key distribution (CV-QKD) protocol that uses dual-threshold detection. Furthermore, to study the system behaviour, closed-form expressions for quantum bit-error-rate (QBER) and quantum bit-discard rate (QBDR) are given. The accuracy of the proposed derivations is validated using Monte-Carlo simulations and numerical analysis. The dual-threshold range is optimised to satisfy design criteria in terms of QBER and QBDR. Finally, a sufficient selection of transmitter and receiver parameters ensures a guarantee of system security. Additionally, the information capacity is maximised by a scaling coefficient of .

References

    1. 1)
      • 35. Bennett, C.H.: ‘Quantum cryptography using any two nonorthogonal states’, Phys. Rev. Lett., 1992, 68, (21), pp. 31213124.
    2. 2)
      • 25. Toyoshima, M., Jono, T., Nakagawa, K., et al: ‘Optimum divergence angle of a gaussian beam wave in the presence of random jitter in free-space laser communication systems’, J. Opt. Soc. Am., 2002, 19, (3), pp. 567571.
    3. 3)
      • 30. Wang, J.Y., Yang, B., Liao, S.K., et al: ‘Direct and full-scale experimental verifications towards ground–satellite quantum key distribution’, Nat. Photonics, 2013, 7, (5), p. 387.
    4. 4)
      • 44. Shall, S., Monir, M.S., Rahman, M.S.: ‘Numerical modeling and simulation of quantum key distribution systems under non-ideal conditions’. 2017 IEEE Int. Conf. on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 2017, pp. 3842.
    5. 5)
      • 12. Hashim, A.H., Mahad, F.D., Idrus, S.M., et al: ‘Modeling and performance study of inter-satellite optical wireless communication system’. Int. Conf. On Photonics 2010, Langkawi, Malaysia, 2010, pp. 14.
    6. 6)
      • 50. Toyoshima, M., Takayama, Y., Takahashi, T., et al: ‘Laser beam propagation in ground-to-oicets laser communication links’, J. Space Technol. Sci., 2007, 23, (2), pp. 3045.
    7. 7)
      • 22. Arnon, S.: ‘Optimization of urban optical wireless communication systems’, IEEE Trans. Wirel. Commun., 2003, 2, (4), pp. 626629.
    8. 8)
      • 59. Ikuta, T., Inoue, K.: ‘Intensity modulation and direct detection quantum key distribution based on quantum noise’, New J. Phys., 2016, 18, (1), pp. 1318.
    9. 9)
      • 61. Proakis, J.G., Salehi, M.: ‘Digital communications’, vol. 4 (McGraw-hill, New York, 2001).
    10. 10)
      • 47. Yang, F., Cheng, J., Tsiftsis, T.A.: ‘Free-space optical communication with nonzero boresight pointing errors’, IEEE Trans. Commun., 2014, 62, (2), pp. 713725.
    11. 11)
      • 31. He, D., Wang, Q., Liu, X., et al: ‘Shipborne acquisition, tracking, and pointing experimental verifications towards satellite-to-sea laser communication’, Appl. Sci., 2019, 9, (18), p. 3940.
    12. 12)
      • 5. Roberts, G.L., Lucamarini, M., Dynes, J.F., et al: ‘Manipulating photon coherence to enhance the security of distributed phase reference quantum key distribution’, Appl. Phys. Lett., 2017, 111, (26), pp. 15.
    13. 13)
      • 65. British.Standard.Institution: ‘Part 1 equipment classification and requirements’, 2007, pp. 1015.
    14. 14)
      • 34. Bennett, C.H., Brassard, G: ‘An update on quantum cryptography’. Workshop on the Theory and Application of Cryptographic Techniques, Leuven, Belgium, 1984, pp. 475480.
    15. 15)
      • 48. Kartalopoulos, S.: ‘Free space optical networks for ultra-broad band services’ (John Wiley & Sons, USA, 2011).
    16. 16)
      • 13. Chan, V.W.: ‘Optical satellite networks’, J. Lightwave Technol., 2003, 21, (11), p. 2811.
    17. 17)
      • 10. Hosseinidehaj, N., Babar, Z., Malaney, R., et al: ‘Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook’, IEEE Commun. Surv. Tutor., 2018, 21, (1), pp. 881919.
    18. 18)
      • 38. Gisin, N., Ribordy, G., Tittel, W., et al: ‘Quantum cryptography’, Rev. Mod. Phys., 2002, 74, (1), p. 145.
    19. 19)
      • 24. Toyoshima, M., Takayama, Y., Takahashi, T., et al: ‘Ground-to-satellite laser communication experiments’, IEEE Aerosp. Electron. Syst. Mag., 2008, 23, (8), pp. 1018.
    20. 20)
      • 1. Majumdar, A.K.: ‘Advanced free space optics (FSO): a systems approach’, vol. 186 (Springer, USA, 2014).
    21. 21)
      • 42. Liao, S.K., Cai, W.Q., Liu, W.Y., et al: ‘Satellite-to-ground quantum key distribution’, Springer Nat., 2017, 549, (1), pp. 4359.
    22. 22)
      • 57. Mathematica: ‘http://functions.wolfram.com/’. http://functions. wolfram.com/Hypergeometric/Functions/MeijerG/, accessed 19 July 2018.
    23. 23)
      • 19. Kim, I.I., McArthur, B., Korevaar, E.J: ‘Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications’. Optical Wireless Communications III. International Society for Optics and Photonics, Boston, MA, USA, 2001, vol. 4214, pp. 2637.
    24. 24)
      • 55. Kaushal, H., Jain, V., Kar, S.: ‘Free space optical communication’, vol. 18 (Springer, USA, 2017).
    25. 25)
      • 46. Islam, N.T.: ‘High-rate, high-dimensional quantum key distribution systems’ (Springer, USA, 2018).
    26. 26)
      • 28. Lyras, N.K., Efrem, C.N., Kourogiorgas, C.I., et al: ‘Optimum monthly based selection of ground stations for optical satellite networks’, IEEE Commun. Lett., 2018, 22, (6), pp. 11921195.
    27. 27)
      • 27. Liao, S.K., Yong, H.L., Liu, C., et al: ‘Long-distance free-space quantum key distribution in daylight towards inter-satellite communication’, Nat. Photonics, 2017, 11, (8), p. 509.
    28. 28)
      • 11. Hosseinidehaj, N., Babar, Z., Malaney, R., et al: ‘Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook’, IEEE Commun. Surv. Tutor., 2019, 21, (1), pp. 881919.
    29. 29)
      • 15. Anbarasi, K., Hemanth, C., Sangeetha, R.: ‘A review on channel models in free space optical communication systems’, Opt. Laser Technol., 2017, 97, pp. 161171.
    30. 30)
      • 7. Korzh, B., Lim, C.C.W., Houlmann, R., et al: ‘Provably secure and practical quantum key distribution over 307 km of optical fibre’, Nat. Photonics, 2015, 9, (3), p. 163.
    31. 31)
      • 40. Weedbrook, C., Pirandola, S., García-Patrón, R., et al: ‘Gaussian quantum information’, Rev. Mod. Phys., 2012, 84, (2), p. 621.
    32. 32)
      • 23. Liu, X.: ‘Free-space optics optimization models for building sway and atmospheric interference using variable wavelength’, IEEE Trans. Commun., 2009, 57, (2), pp. 492498.
    33. 33)
      • 60. Ryzhik, I.M., Gradshteyn, I.: ‘Table of integrals, series, and products’ (Elsevier, USA, 2007).
    34. 34)
      • 14. Kaushal, H., Kaddoum, G.: ‘Optical communication in space: challenges and mitigation techniques’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 5796.
    35. 35)
      • 53. fSONA: ‘www.fsona.com’. Available at http://fsona.com/product.php, accessed 4 February 2019.
    36. 36)
      • 39. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al: ‘The security of practical quantum key distribution’, Rev. Mod. Phys., 2009, 81, (3), p. 1301.
    37. 37)
      • 33. Wiesner, S.: ‘Acm sigact news-a specia issue on cryptography’, Conjugate Coding, 1983, 15, (1), pp. 7888.
    38. 38)
      • 62. Lee, I.E., Ghassemlooy, Z., Ng, W.P., et al: ‘Effects of aperture averaging and beam width on a partially coherent gaussian beam over free-space optical links with turbulence and pointing errors’, J. Appl. Opt., 2016, 55, (1), pp. 19.
    39. 39)
      • 54. Popoola, W.O.: ‘Subcarrier intensity modulated free-space optical communication systems’ (Northumbria University, UK, 2009).
    40. 40)
      • 51. Kim, I.I., Hakakha, H., Adhikari, P., et al: ‘Scintillation reduction using multiple transmitters’. Free-Space Laser Communication Technologies IX. International Society for Optics and Photonics, San Jose, CA, USA, 1997, vol. 2990, pp. 102113.
    41. 41)
      • 64. Lacis, A.A., Hansen, J.: ‘A parameterization for the absorption of solar radiation in the earth's atmosphere’, J. Atmos. Sci., 1974, 31, (1), pp. 118133.
    42. 42)
      • 41. Bennett, C.H., Brassard, G.: ‘Experimental quantum cryptography: the dawn of a new era for quantum cryptography’, ACM Sigact News, 1989, 20, (1), pp. 7880.
    43. 43)
      • 36. Branciard, C., Gisin, N., Kraus, B., et al: ‘Security of two quantum cryptography protocols using the same four qubit states’, Phys. Rev. A, 2005, 72, (3), pp. 120.
    44. 44)
      • 8. Schmitt-Manderbach, T., Weier, H., Fürst, M., et al: ‘Experimental demonstration of free-space decoy-state quantum key distribution over 144 km’, Phys. Rev. Lett., 2007, 98, (1), p. 010504.
    45. 45)
      • 18. Ismail, T., Leitgeb, E., Plank, T.: ‘Free space optic and mmwave communications: technologies, challenges and applications’, IEICE Trans. Commun., 2016, 99, (6), pp. 12431254.
    46. 46)
      • 37. Khan, M.M., Murphy, M., Beige, A.: ‘High error-rate quantum key distribution for long-distance communication’, New J. Phys., 2009, 11, (6), pp. 117.
    47. 47)
      • 29. Arimoto, Y.: ‘Multi-gigabit free-space optical communication system with bidirectional beacon tracking’, IEEJ Trans. Fundam. Mater., 2007, 127, (7), pp. 385390.
    48. 48)
      • 6. Yin, J., Cao, Y., Li, Y.H., et al: ‘Satellite-based entanglement distribution over 1200 kilometers’, Science, 2017, 356, (6343), pp. 11401144.
    49. 49)
      • 58. Agrawal, G.P.: ‘Fiber-optic communication systems’, vol. 222 (John Wiley & Sons, USA, 2012).
    50. 50)
      • 9. Bruschi, D.E., Ralph, T.C., Fuentes, I., et al: ‘Spacetime effects on satellite-based quantum communications’, Phys. Rev. D, 2014, 90, (4), p. 045041.
    51. 51)
      • 63. Bell, R.: ‘A beginner's guide to big o notation’, Retrieved May, 2009, 16, p. 2018.
    52. 52)
      • 45. Papanastasiou, P., Weedbrook, C., Pirandola, S.: ‘Continuous-variable quantum key distribution in uniform fast-fading channels’, Phys. Rev. A, 2018, 97, (3), p. 032311.
    53. 53)
      • 21. Roddy, D.: ‘Satellite communications (professional engineering)’ (McGraw-Hill Professional, New York, 2006).
    54. 54)
      • 56. Sandalidis, H.G.: ‘Performance analysis of a laser ground-station-to-satellite link with modulated gamma-distributed irradiance fluctuations’, J. Opt. Commun. Netw., 2010, 2, (11), pp. 938943.
    55. 55)
      • 49. Viswanath, A., Jain, V.K., Kar, S.: ‘Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes’, IET Commun., 2015, 9, (18), pp. 22532258.
    56. 56)
      • 20. Akbulut, A., Ilk, H.G., Ari, F.: ‘Design, availability and reliability analysis on an experimental outdoor fso/rf communication system’. Proc. of 2005 7th Int. Conf. Transparent Optical Networks, 2005, Barcelona, Spain, 2005, vol. 1, pp. 403406.
    57. 57)
      • 43. Sun, X., Djordjevic, I.B., Neifeld, M.A.: ‘Secret key rates and optimization of bb84 and decoy state protocols over time-varying free-space optical channels’, IEEE Photonics J., 2016, 8, (3), pp. 113.
    58. 58)
      • 16. Andrews, L.C., Phillips, R.L., Sasiela, R.J., et al: ‘Pdf models for uplink to space in the presence of beam wander’. Atmospheric Propagation IV. International Society for Optics and Photonics, Orlando, FL, USA, 2007, vol. 6551, pp. 112.
    59. 59)
      • 32. Kaymak, Y., Rojas-Cessa, R., Feng, J., et al: ‘A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications’, IEEE Commun. Surv. Tutor., 2018, 20, (2), pp. 11041123.
    60. 60)
      • 52. Toyoshima, M., Kuri, T., Klaus, W., et al: ‘4-2 overview of the laser communication system for the nict optical ground station and laser communication experiments on ground-to-satellite links’, J. Nat. Inst. Inf. Commun. Technol., 2012, 59, (2), pp. 5375.
    61. 61)
      • 2. Yuen, H.P.: ‘Security of quantum key distribution’, IEEE Access, 2016, 4, pp. 724749.
    62. 62)
      • 4. Trinh, P.V., Pham, T.V., Dang, N.T., et al: ‘Design and security analysis of quantum key distribution protocol over free-space optics using dual-threshold direct-detection receiver’, IEEE Access, 2018, 6, pp. 41594175.
    63. 63)
      • 17. Andrews, L.C., Phillips, R.L.: ‘Laser beam propagation through random media’, vol. 152 (SPIE press, Bellingham, WA, 2005).
    64. 64)
      • 26. Arnon, S., Kopeika, N.S.: ‘The performance limitations of free space optical communication satellite networks due to vibrations-analogs case’. Proc. of 19th Convention of Electrical and Electronics Engineers in Israel, Jerusalem, Palestine, 1996, pp. 367370.
    65. 65)
      • 3. Li, Y.M., Wang, X.Y., Bai, Z.L., et al: ‘Continuous variable quantum key distribution’, Chin. Phys. B, 2017, 26, (4), pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0795
Loading

Related content

content/journals/10.1049/iet-com.2019.0795
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address