access icon free Efficient beam selection and resource allocation scheme for WiFi and 5G coexistence at unlicensed millimetre-wave bands

To alleviate the spectrum scarcity, the unlicensed 60 GHz band has raised increasing concerns due to its continuous large bandwidth. Considering IEEE 802.11ad/ay has already been deployed in this millimetre-wave band, the coexistence issues with new radio-based access to unlicensed spectrum should be weighed when deploying fifth generation (5G) network. Fortunately, the directional transmission on beams is able to reduce interference significantly, so beam selection can be combined with power control. To maximise spectrum efficiency (SE) of the 5G network while ensuring a friendly coexistence, the authors formulate an optimisation problem by jointly considering beam selection and resource allocation. More specifically, they design a spectrum planning mechanism to reduce the interference between 5G and WiFi, and then a block coordinate descent method is used to determine the user association, beam selection and power control for 5G users, while limiting the interferences to WiFi devices. Simulation results verify the effectiveness of the proposed algorithm in terms of complexity, convergence and SE.

Inspec keywords: optimisation; wireless LAN; telecommunication network planning; power control; resource allocation; telecommunication control; millimetre wave communication; radiofrequency interference; 5G mobile communication

Other keywords: directional transmission; spectrum scarcity; spectrum planning mechanism; resource allocation scheme; unlicensed spectrum; beam selection; efficient beam selection; unlicensed millimetre-wave bands; continuous large bandwidth; radio-based access; interference reduction; fifth generation network; user association; WiFi devices; optimisation problem; spectrum efficiency; block coordinate descent method; power control; frequency 60.0 GHz; resource allocation; IEEE 802.11ad/ay; 5G network

Subjects: Local area networks; Mobile radio systems; Electromagnetic compatibility and interference; Computer communications; Communication network design, planning and routing; Control applications in radio and radar; Power and energy control; Optimisation techniques; Optimisation techniques

References

    1. 1)
      • 4. Yilmaz, T., Akan, O.B.: ‘State-of-the-art and research challenges for consumer wireless communications at 60 GHz’, IEEE Trans. Consum. Electron., 2016, 62, (3), pp. 216225.
    2. 2)
      • 29. Wang, J., Lan, Z., Pyo, C.-W., et al: ‘Beam codebook based beamforming protocol for multi-gbps millimeter-wave WPAN systems’, IEEE J. Sel. Areas Commun., 2009, 27, (8), pp. 13901399.
    3. 3)
      • 22. ‘Online available at http.//www.ieee802.org, 2019.
    4. 4)
      • 28. Aldubaikhy, K., Wu, W., Shen, X.S.: ‘HBF-PDVG: hybrid beamforming and user selection for UL MU-MIMO mmWave systems’. 2018 IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 2018, 16.
    5. 5)
      • 9. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., et al: ‘NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey’, Comput. Netw., 2017, 50, (13), pp. 21272159.
    6. 6)
      • 6. Nekovee, M., Qi, Y., Wang, Y.: ‘Self-organized beam scheduling as an enabler for coexistence in 5G unlicensed bands’, IEICE Trans. Commun., 2017, E100-B, (8), pp. 11811189.
    7. 7)
      • 5. Selinis, I., Katsaros, K., Allayioti, M., et al: ‘The race to 5G era; LTE and WiFi’, IEEE Access, 2018, 6, pp. 5659856636.
    8. 8)
      • 30. Tsiaflakis, P., Diehl, M., Moonen, M.: ‘Distributed spectrum management algorithms for multiuser DSL networks’, IEEE Trans. Signal Process., 2008, 56, (10), pp. 48254843.
    9. 9)
      • 15. Rappaport, T.S., Xing, Y., MacCartney, G.R., et al: ‘Overview of millimeter wave communications for fifth-generation (5G) wireless networks–with a focus on propagation models’, IEEE Trans. Antennas Propag., 2017, 65, (12), pp. 62136230.
    10. 10)
      • 12. Girmay, G.G., Pham, Q., Hwang, W.: ‘Joint channel and power allocation for device-to-device communication on licensed and unlicensed band’, IEEE Access, 2019, 7, pp. 2219622205.
    11. 11)
      • 1. Chen, B., Chen, J., Gao, Y., et al: ‘Coexistence of LTE-LAA and WiFi on 5 GHz with corresponding deployment scenarios: a survey’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 732.
    12. 12)
      • 11. Tan, J., Xiao, S., Han, S., et al: ‘QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems’, IEEE Trans. Wirel. Commun., 2019, 18, (4), pp. 24152430.
    13. 13)
      • 8. Tanab, M.E., Hamouda, W.: ‘Resource allocation for underlay cognitive radio networks: a survey’, IEEE Commun. Surv. Tutor., 2017, 19, (2), pp. 12491276.
    14. 14)
      • 13. LeAnh, T., Tran, N.H., Ngo, D.T., et al: ‘Orchestrating resource management in LTE-unlicensed systems with backhaul link constraints’, Trans. Wirel. Commun., 2019, 18, (2), pp. 13601375.
    15. 15)
      • 20. Park, S., Alkhateeb, A., Heath, R.W.: ‘Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems’, IEEE Trans. Wirel. Commun., 2017, 16, (5), pp. 29072920.
    16. 16)
      • 21. ‘IEEE Standard for Information technology–Telecommunications and information exchange between systems Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications’. IEEE Std 802.11,, 2012.
    17. 17)
      • 24. Ayach, O.E., Rajagopal, S., Abu-Surra, S., et al: ‘Spatially sparse precoding in millimeter wave MIMO systems’, Trans. Wirel. Commun., 2014, 13, (3), pp. 14991513.
    18. 18)
      • 26. Xu, X., Shen, J.-C., Zhang, J., et al: ‘Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), p. 485500.
    19. 19)
      • 18. Lagen, S., Giupponi, L., Patriciello, N.: ‘LBT switching procedures for new radio-based access to unlicensed spectrum’. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 16.
    20. 20)
      • 23. Love, D.J., Heath, R.W.: ‘Equal gain transmission in multiple-input multiple-output wireless systems’, IEEE Trans. Commun., 2003, 51, (7), pp. 11021110.
    21. 21)
      • 17. Li, P., Liu, D., Hou, X., et al: ‘Trajectory prediction and channel monitoring aided fast beam tracking scheme at unlicensed mmWave bands’, Electronics, 2020, 9, p. 747.
    22. 22)
      • 3. Charfi, E., Haari, L.C, Kamoun, L.: ‘PHY/MAC enhancements and QoS mechanisms for very high throughput WLANs: a survey’, IEEE Commun. Surv. Tutor., 2013, 15, (4), pp. 17141735.
    23. 23)
      • 25. Gustafson, C., Haneda, K., Wyne, S., et al: ‘On mm-wave multipath clustering and channel modeling’, IEEE Trans. Antennas Propag., 2014, 62, (3), pp. 14451455.
    24. 24)
      • 27. Li, J., Ai, B., He, R., et al: ‘Cluster-based 3-D channel modeling for massive MIMO in subway station environment’, IEEE Access, 2018, 6, pp. 62576272.
    25. 25)
      • 19. Soleimani, B., Sabbaghian, M.: ‘Cluster-based resource allocation and user association in mmWave femtocell networks’, IEEE Trans. Commun., 2020, 68, (3), pp. 17461759.
    26. 26)
      • 14. Lagen, S., Giupponi, L., Goyal, S., et al: ‘New radio beam-based access to unlicensed spectrum: design challenges and solutions’, IEEE Commun. Surv. Tutor., 2020, 22, (1), pp. 837.
    27. 27)
      • 2. Wang, P., Li, Y., Song, L., et al: ‘Multi-gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks’, IEEE Commun. Mag., 2015, 53, (1), pp. 168178.
    28. 28)
      • 10. Jalaeian, B.B., Zhu, R., Motani, M.: ‘An optimal scheduling framework for concurrent transmissions in wireless cognitive radio networks’, Telecommun. Syst., 2015, 60, (1), pp. 169177.
    29. 29)
      • 31. Papandriopoulos, J., Evans, J.S.: ‘Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks’, IEEE Int. Conf. Commun., 2006, 7, (1), pp. 32703275.
    30. 30)
      • 7. 3GPP R1-1901525: ‘Coexistence and channel access for NR unlicensed band operations’. Athens, Greece,, 2019.
    31. 31)
      • 16. Li, P., Liu, D., Yu, F.: ‘Joint directional LBT and beam training for channel access in unlicensed 60 GHz mmWave’. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0746
Loading

Related content

content/journals/10.1049/iet-com.2019.0746
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading