Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Interference mitigation and receiving performance improvement strategies for local cooperation in the 5G system

In the 5G system, different units probably do cooperation to satisfy the communication requirements. However, when network configuration is limited, these units may be difficult to adopt the globally cooperative style. In this case, local cooperation is considered. This study focuses on local cooperation, and mainly aims at interference mitigation between different units and receiving performance improvement for each unit. Generally, a two-step scheme is proposed. First, channel decomposition is acted on interference mitigation through the design of first-step transmitters and receivers. Second, channel diagonalisation with symbol processing and selection principle is executed for receiving performance improvement, and the second-step transmitters and receivers are generated. The authors' contributions are: (i) they present the general scenario of local cooperation, and propose the corresponding strategies of interference mitigation and receiving performance improvement; (ii) they do not apply any iterative algorithm, and can adjust the quantity of information interaction between multiple units; (iii) they can make the symbol processing rule, modulation mode and signal-to-noise ratio metric flexible for each data stream. Numerical results illustrate the proposed scheme efficiently reduces the bit error rate, which means the proposed scheme can achieve the satisfactory effect in the locally cooperative network.

References

    1. 1)
      • 25. Mahboobi, B., Mehrizi, S., Ardebilipour, M.: ‘Multicast relay beamforming in CDMA networks: nonregenerative approach’, IEEE Commun. Lett., 2015, 19, (8), pp. 14181421.
    2. 2)
      • 24. Hao, W.M., Muta, O., Gacanin, H., et al: ‘Dynamic small cell clustering and non-cooperative game-based precoding design for two-tier heterogeneous networks with massive MIMO’, IEEE Trans. Commun., 2018, 66, (2), pp. 675687.
    3. 3)
      • 18. Li, Y., Fan, P.Z., Beaulieu, N.C.: ‘Cooperative downlink max-min energy efficient precoding for multicell MIMO networks’, IEEE Trans. Veh. Technol., 2016, 65, (11), pp. 94259430.
    4. 4)
      • 37. Xu, D.T., Ren, P.Y., Sun, L., et al: ‘Precoder-and-receiver design scheme for multi-user coordinated multi-point in LTE-A and fifth generation systems’, IET Commun., 2016, 10, (3), pp. 292299.
    5. 5)
      • 8. Bassoy, S., Farooq, H., Imran, M.A., et al: ‘Coordinated multi-point clustering schemes: a survey’, IEEE Commun. Surv. Tuts., 2017, 19, (2), pp. 743764.
    6. 6)
      • 20. Joroughi, V., Vazquez, M.A., Neira, A.I.P.: ‘Precoding in multigateway multibeam satellite systems’, IEEE Trans. Wirel. Commun., 2016, 15, (7), pp. 49444956.
    7. 7)
      • 15. Ng, C.T.K., Huang, H.: ‘Linear precoding in cooperative MIMO cellular networks with limited coordination clusters’, IEEE J. Sel. Areas Commun., 2010, 28, (9), pp. 14461454.
    8. 8)
      • 13. Flordelis, J., Rusek, F., Tufvesson, F., et al: ‘Massive MIMO performance-TDD versus FDD: what do measurements say?’, IEEE Trans. Wirel. Commun., 2018, 17, (4), pp. 22472261.
    9. 9)
      • 23. Lee, S., Kang, J., Jeong, S., et al: ‘Joint design of precoder and backhaul quantizer in cooperative cognitive radio networks’, IEEE Trans. Veh. Technol., 2017, 66, (3), pp. 18711875.
    10. 10)
      • 21. Song, C., Jeon, Y.: ‘Weighted MMSE precoder designs for sum-utility maximization in multi-user SWIPT network-MIMO with per-BS power constraints’, IEEE Trans. Veh. Technol., 2018, 67, (3), pp. 28092813.
    11. 11)
      • 1. 3GPP TS 21.205 (v2.0.0): ‘Technical Specification Group Services and System Aspects; Technical Specifications and Technical Reports for a 5G based 3GPP system (Release 15)’, 2018.
    12. 12)
      • 34. Ma, H., Mostafa, A., Lampe, L., et al: ‘Coordinated beamforming for downlink visible light communication networks’, IEEE Trans. Commun., 2018, 66, (8), pp. 35713582.
    13. 13)
      • 6. Chen, H., Abbas, R., Cheng, P., et al: ‘Ultra-reliable low latency cellular networks: use cases, challenges and approaches’, IEEE Commun. Mag., 2018, 56, (12), pp. 119125.
    14. 14)
      • 40. Cho, Y.S., Kim, J., Yang, W.Y., et al: ‘MIMO-OFDM wireless communications with MATLAB’ (Wiley Press, USA, 2010).
    15. 15)
      • 16. Fei, Z.S., Yang, A., Xing, C.W., et al: ‘Performance of superposition coding for downlink coordinated two-point system’, IEEE Trans. Veh. Technol., 2013, 62, (8), pp. 40574064.
    16. 16)
      • 33. Kaviani, S., Simeone, O., Krzymien, W.A., et al: ‘Linear precoding and equalization for network MIMO with partial cooperation’, IEEE Trans. Veh. Technol., 2012, 61, (5), pp. 20832096.
    17. 17)
      • 35. Lutkepohl, H.: ‘Handbook of matrixes’ (Wiley Press, USA, 1997).
    18. 18)
      • 26. James, J.V.B., Ramamurthi, B.: ‘Distributed cooperative precoding with SINR-based co-channel user grouping for enhanced cell edge performance’, IEEE Trans. Wirel. Commun., 2011, 10, (9), pp. 28962907.
    19. 19)
      • 28. Wang, L.W., Liang, Q.L.: ‘Performance analysis of cooperative multicell precoding with global CSI and local individual CSI in the large dimensional regime’, IEEE Trans. Veh. Technol., 2018, 67, (4), pp. 32293238.
    20. 20)
      • 4. Wan, L., Guo, Z.H., Wu, Y., et al: ‘4G/5G spectrum sharing: efficient 5G deployment to serve enhanced mobile broadband and internet of things applications’, IEEE Veh. Technol. Mag., 2018, 13, (4), pp. 2839.
    21. 21)
      • 10. Khoshnevisan, M., Joseph, V., Gupta, P., et al: ‘5G industrial networks with coMP for URLLC and time sensitive network architecture’, IEEE J. Sel. Areas Commun., 2019, 37, (4), pp. 947959.
    22. 22)
      • 36. Proakis, J.G., Salehi, M.: ‘Digital communications’ (McGraw-Hill Press, USA, 5th edn, 2008).
    23. 23)
      • 30. Tran, L.-N., Juntti, M., Bengtsson, M., et al: ‘Beamformer designs for MISO broadcast channels with zero-forcing dirty paper coding’, IEEE Trans. Wirel. Commun., 2013, 12, (3), pp. 11731185.
    24. 24)
      • 39. Baum, D.S., Hansen, J., Salo, J.: ‘An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM)’. Proc. IEEE 61st Veh. Technol. Conf., Stockholm, Sweden, 2005, pp. 31323136.
    25. 25)
      • 31. Zu, K.K., de Lamare, R.C., Haardt, M.: ‘Generalized design of low-complexity block diagonalization type precoding algorithms for multiuser MIMO systems’, IEEE Trans. Commun., 2013, 61, (10), pp. 42324242.
    26. 26)
      • 29. Xu, J., Ren, P.Y., Xu, C.B., et al: ‘Distributed cooperative two-cell zero-forcing precoding with local channel correlation’, IEEE Trans. Veh. Technol., 2017, 66, (9), pp. 80868102.
    27. 27)
      • 14. Zhang, R.: ‘Cooperative multi-cell block diagonalization with per-base-station power constraints’, IEEE J. Sel. Areas Commun., 2010, 28, (9), pp. 14351445.
    28. 28)
      • 2. ITU: ‘Setting the Scene for 5G: Opportunities & Challenges’, 2018.
    29. 29)
      • 11. Park, S.-H., Simeone, O., Shitz, S.S.: ‘Time-asynchronous robust cooperative transmission for the downlink of C-RAN’, IEEE Signal Process. Lett., 2016, 23, (10), pp. 14441448.
    30. 30)
      • 32. Yang, Y., Wang, W.J., Gao, X.Q.: ‘Distributed RZF precoding for multiple-beam MSC downlink’, IEEE Trans. Aerosp. Electron. Syst., 2018, 54, (2), pp. 968977.
    31. 31)
      • 5. Fuqaha, A.A., Guizani, M., Mohammadi, M., et al: ‘Internet of things: a survey on enabling technologies, protocols, and applications’, IEEE Commun. Surv. Tuts., 2015, 17, (4), pp. 23472376.
    32. 32)
      • 7. Jungnickel, V., Manolakis, K., Zirwas, W., et al: ‘The role of small cells, coordinated multipoint, and massive MIMO in 5G’, IEEE Commun. Mag., 2014, 52, (5), pp. 4451.
    33. 33)
      • 17. Fei, Z.S., Xing, C.W., Li, N., et al: ‘Leakage-based distributed minimum-mean-square error beamforming for relay-assisted cloud radio access networks’, IET Commun., 2014, 8, (11), pp. 18831891.
    34. 34)
      • 3. Agiwal, M., Roy, A., Saxena, N.: ‘Next generation 5G wireless networks: a comprehensive survey’, IEEE Commun. Surv. Tuts., 2016, 18, (3), pp. 16171655.
    35. 35)
      • 9. Song, G.C., Wang, W., Chen, D., et al: ‘KPI/KQI-driven coordinated multipoint in 5G: measurements, field trials, and technical solutions’, IEEE Wirel. Commun., 2018, 25, (5), pp. 2329.
    36. 36)
      • 22. Nguyen, D.H.N., Le, H.N., Ngoc, T.L.: ‘Block-diagonalization precoding in a multiuser multicell MIMO system: competition and coordination’, IEEE Trans. Wirel. Commun., 2014, 13, (2), pp. 968981.
    37. 37)
      • 12. Kim, D., Yang, Y., Sung, K.W., et al: ‘Cooperation strategies for partly wireless C-RAN’, IEEE Commun. Lett., 2018, 22, (6), pp. 12481251.
    38. 38)
      • 27. Kim, H.-J., Baek, J.-S., Oh, J.-M., et al: ‘Improved leakage-based precoding with vector perturbation for MU-MIMO systems’, IEEE Commun. Lett., 2012, 16, (11), pp. 18681871.
    39. 39)
      • 38. Faruque, S.: ‘Radio frequency propagation made easy’ (Springer International Publishing, Switzerland, 2015).
    40. 40)
      • 19. Yao, R.G., Liu, Y.S., Lu, L., et al: ‘Cooperative precoding for cognitive transmission in two-tier networks’, IEEE Trans. Commun., 2016, 64, (4), pp. 14231436.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0734
Loading

Related content

content/journals/10.1049/iet-com.2019.0734
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address