access icon free New four-dimensional signal constellations construction

In this study, the authors present new four-dimensional signal constellations constructed based on combinations of binary frequency shift keying and M -ary phase-shift keying. Such a system contains two sub-constellations and phase shift keying modulation is carried out based on two different frequencies. They obtained an analytical expression for calculating of squared Euclidean distance for different signal constellations. The new method of system construction and optimisation is presented with the help of this formula. Having used this method for various signal constellations and modulation indexes, they constructed optimised systems. In tables, they present the parameters for signal constellation sizes 4, 5, …,16 and modulation indexes 0.1, 0.2, …,1. Such signal constellations can be used in MIMO systems and, in particular, in generalised multi-stream spatial modulation systems.

Inspec keywords: signal processing; frequency shift keying; phase shift keying; optimisation

Other keywords: M-ary phase-shift keying modulation; MIMO system; four-dimensional signal constellations construction; squared Euclidean distance calculation; signal constellations; generalised multistream spatial modulation systems; binary frequency shift; optimisation

Subjects: Modulation and coding methods; Signal processing theory; Signal processing and detection; Optimisation techniques; Optimisation techniques

References

    1. 1)
      • 1. Sklar, B.: ‘Digital communications’ (Prentice-Hall PTR, New Jersey, 2001, 2nd edn.).
    2. 2)
      • 15. Ugrelidze, N., Shavgulidze, S., Sordia, M.: ‘New generalized multi-stream spatial modulation for wireless communications’. Proc. the 11th Wireless Days Conf., 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019, pp. 17.
    3. 3)
      • 19. De, A., Sasase, I., Kabal, P.: ‘Trellis-coded phase/frequency modulation with equal usage of signal dimensions’. Proc. IEEE Global Communication Conf. (GLOBECOM), Orlando, USA, December 1992, pp. 17691773.
    4. 4)
      • 17. Periyalwar, S. S., Fleisher, S.M.: ‘Multiple trellis coded frequency and phase modulation’, IEEE Trans. Commun., 1992, 40, (6), pp. 10381046.
    5. 5)
      • 10. Mesleh, R., Ikki, S.S., Aggoune, H.M.: ‘Quadrature spatial modulation’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 27382742.
    6. 6)
      • 18. Periyalwar, S. S., Fleisher, S.M.: ‘Trellis coding of quadrature frequency/phase modulated signals’, IEEE J. Sel. Areas Commun., 1992, 10, (8), pp. 12541263.
    7. 7)
      • 20. Melvil Thomas, C., Weidner, M.Y., Durrani, S.H.: ‘Digital amplitude-phase keying with M-ary alphabets’, IEEE Trans. Commun., 1974, 22, (2), pp. 168180.
    8. 8)
      • 22. Anderson, J. B., Aulin, T., Sundberg, C.-E.: ‘Digital phase modulation’ (Plenum Press, New York, 1986).
    9. 9)
      • 11. Cheng, C.-C., Sari, H., Sezginer, S., et al: ‘New signal designs for enhanced spatial modulation’, IEEE Trans. Wirel. Commun., 2016, 15, (11), pp. 77667777.
    10. 10)
      • 5. Padovani, R., Wolf, J.K.: ‘Coded phase/frequency modulation’, IEEE Trans. Commun., 1986, 34, (5), pp. 446453.
    11. 11)
      • 9. Di, R.M., Haas, H., Ghrayeb, A., et al: ‘Spatial modulation for generalized MIMO: challenges, opportunities, and implementation’, Proc. IEEE, 2014, 102, (1), pp. 56103.
    12. 12)
      • 6. Biglieri, E., Elia, M.: ‘Multi-dimensional modulation and coding for band-limited digital channels’, IEEE Trans. Inf. Theory, 1988, 34, (4), pp. 803809.
    13. 13)
      • 7. Forney, G.D.Jr., Wei, L.-F.: ‘Multi-dimensional constellations – part I: introduction, figures of merit, and generalized cross constellations’, IEEE J. Sel. Areas Commun., 1989, 7, (6), pp. 877892.
    14. 14)
      • 21. Al-Dweik, A., Al-Araji, S.: ‘A new modulation scheme for multiple access interference reduction in frequency hopping networks’. Second IFIP Int. Conf. on Wireless and Optical Communications Networks 2005 (WOCN 2005), Dubai, 2005, pp. 506509.
    15. 15)
      • 8. Luna-Rivera, J.M., Campos-Delgado, D.U., Gonzalez-Perez, M.G.: ‘Constellation design for spatial modulation’. The 2013 Iberoamerican Conf. on Electronics Engineering and Computer Science. Procedia Technology 7, San Luis Potosi, Mexico, 2013, pp. 7178.
    16. 16)
      • 14. Choi, J., Nam, Y., Lee, N.: ‘Spatial lattice modulation for MIMO systems’, IEEE Trans. Sign. Process., 2018, 66, (12), pp. 31853198.
    17. 17)
      • 13. Freudenberger, J., Rohweder, D., Shavgulidze, S.: ‘Generalized multi-stream spatial modulation with signal constellations based Hurwitz integers and low-complexity detection’, IEEE Wirel. Commun. Lett., 2018, 7, (3), pp. 412415.
    18. 18)
      • 23. Bossert, M., Hautle, A., Shavgulidze, S., et al: ‘Simplified method for the construction of an orthonormal base for CPFSK signals’, IEE Electr. Lett., 1996, 32, (24), pp. 22112213.
    19. 19)
      • 24. Saci, A., Shami, A., Al-Dweik, A.: ‘Cross-layer spectral efficiency of adaptive communications systems with QoS constraints’. Proc. IEEE 86th Vehicular Technology Conf. (VTC2017-Fall), Toronto, Canada, 24–27 September 2017, pp. 15.
    20. 20)
      • 4. Calderbank, R., Sloane, N.J.A.: ‘Four-dimensional modulation with an eight-state trellis code’, AT&T Technol. J., 1985, 64, (5), pp. 10051018.
    21. 21)
      • 2. Proakis, J.G., Salehi, M.: ‘Digital communications’ (McGraw Inc., New York, 2008, 5th edn.).
    22. 22)
      • 16. Chalid, A., Sasase, I., Yashima, H., et al: ‘Coded nonuniform phase/frequency modulation’. Proc. IEEE Int. Conf. Communication, Philadelphia, USA, 12–15 June 1988, pp. 23.3.123.3.5.
    23. 23)
      • 12. Freudenberger, J., Shavgulidze, S.: ‘Signal constellations based on Eisenstein integers for generalized spatial modulation’, IEEE Commun. Lett., 2017, 21, (3), pp. 556559.
    24. 24)
      • 3. Welti, G.R., Lee, J.S.: ‘Digital transmission with coherent four-dimensional modulation’, IEEE Trans. Inf. Theory, 1974, 20, (4), pp. 497502.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0528
Loading

Related content

content/journals/10.1049/iet-com.2019.0528
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading