access icon free Research on distributed blockchain-based privacy-preserving and data security framework in IoT

With the rapid development of the Internet of things (IoT), it has brought great convenience for people's life. However, the security and privacy of IoT still face a major challenge. To remedy these issues, in this study, the authors first introduce the three-tier architecture of IoT and analyse the corresponding security problems of each layer, then they discussed the compatibility between IoT and blockchain. Secondly, they propose a new, distributed blockchain-based security architecture of IoT, which rely on gateway nodes of perception layer to secure data storage and sharing, and use middleware servers to analyse and process data. Finally, they adopt game theory to model and analyse their designed scheme. The results demonstrate that their scheme is a safe and deployable framework for IoT data security and privacy.

Inspec keywords: cryptography; data privacy; game theory; middleware; storage management; Internet of Things

Other keywords: data security framework; secure data storage; distributed blockchain-based security architecture; game theory; distributed blockchain-based privacy-preserving; IoT; corresponding security problems; middleware servers

Subjects: Cryptography; Game theory; Game theory; File organisation; Computer networks and techniques; Data security; Mobile, ubiquitous and pervasive computing; Computer communications; Other distributed systems software

References

    1. 1)
      • 15. Qian, Y., Jiang, Y., Chen, J., et al: ‘Towards decentralized IoT security enhancement: a blockchain approach’, Comput. Electr. Eng., 2018, 72, pp. 266273.
    2. 2)
      • 2. Khan, M.A., Salah, K.: ‘Iot security: review, blockchain solutions, and open challenges’, Future Gener. Comput. Syst., 2018, 82, pp. 395411.
    3. 3)
      • 27. IBM Watson IoT Track and Trace contract’. Available at https://github.com/ibm-watson-iot/blockchain-samples/, last accessed 26 July 2019.
    4. 4)
      • 9. Prosanta, G., Biplab, S.: ‘Lightweight and privacy-preserving two-factor authentication scheme for IoT devices’, IEEE Internet Things J., 2018, 6, (1), pp. 580589.
    5. 5)
      • 20. Hassija, V., Chamola, V., Saxena, V., et al: ‘A survey on IoT security: application areas, security threats, and solution architectures’, IEEE Access, 2019, 7, pp. 8272182743.
    6. 6)
      • 26. Johnson, D., Menezes, A., Vanstone, S.: ‘The elliptic curve digital signature algorithm (ECDSA)’, Int. J. Inf. Secur., 2001, 1, (1), pp. 3663.
    7. 7)
      • 5. Kouicem, D.E., Bouabdallah, A., Lakhlef, H., ‘Internet of things security: a top-down survey’, Comput. Netw., 2018, 141, pp. 199221.
    8. 8)
      • 8. Aghili, S.F., Mala, H., Shojafar, M., et al: ‘LACO: lightweight three-factor authentication, access control and ownership transfer scheme for E-health systems in IoT’, Future Gener. Comput. Syst., 2019, 96, pp. 410424.
    9. 9)
      • 13. Hammi, M.T., Hammi, B., Bellot, P., et al: ‘Bubbles of trust: a decentralized blockchain-based authentication system for IoT’, Comput. Secur., 2018, 78, pp. 126142.
    10. 10)
      • 23. Makhdoom, I., Abolhasan, M., Abbas, H., et al: ‘Blockchain's adoption in IoT: the challenges, and a way forward’, J. Netw. Comput. Appl., 2018, 125, pp. 251279.
    11. 11)
      • 16. Dorri, A., Kanhere, S.S., Jurdak, R.: ‘Towards an optimized BlockChain for IoT’. Proc. Int. Conf. Internet-of-Things Design & Implementation, Pittsburgh, PA, USA, April 2017, pp. 173178.
    12. 12)
      • 19. Angin, P., Mert, M.B., Mete, O., et al: ‘A blockchain-based decentralized security architecture for IoT’, in Georgakopoulos, D. (Ed.): ‘Internet of things – ICIOT 2018’ (Springer, Cham, 2018), pp. 318.
    13. 13)
      • 17. Yu, Y., Li, Y., Tian, J., et al: ‘Blockchain-based solutions to security and privacy issues in the internet of things’, IEEE Wirel. Commun., 2018, 25, (6), pp. 1218.
    14. 14)
      • 6. Mao, Y., Li, J., Chen, M.R., et al: ‘Fully secure fuzzy identity-based encryption for secure IoT communications’, Comput. Stand. Interfaces, 2015, 44, pp. 117121.
    15. 15)
      • 25. Biba, K.: ‘Integrity considerations for secure computing systems’. Mitre Report, 1975.
    16. 16)
      • 11. Reyna, A., Martín, C., Chen, J., et al: ‘On blockchain and its integration with IoT. Challenges and opportunities’, Future Gener. Comput. Syst., 2018, 88, pp. 173190.
    17. 17)
      • 24. Hyperledger whitepaper’. Available at https://github.com/hyperledger/hyperledger/wiki/Whitepaper-WG, last accessed 13 September 2018.
    18. 18)
      • 4. Ouaddah, A., Mousannif, H., Elkalam, A.A., et al: ‘Access control in the IoT: big challenges and new opportunities’, Comput. Netw., 2016, 112, pp. 237262.
    19. 19)
      • 21. Hyperledger-fabric documentation’. Available at https://media.readthedocs.org/pdf/hyperledger-fabric/latest/hyperledger-fabric.pdf, last accessed 10 September 2018.
    20. 20)
      • 10. Nbakamoto, S-bitcoin: a peer-to-peer electronic cash system’. Available at www.bitcoin.org, accessed 2008.
    21. 21)
      • 18. Yu, B., Wright, J., Nepal, S., et al: ‘IoTChain: establishing trust in the internet of things ecosystem using blockchain’, IEEE Cloud Comput., 2018, 5, (4), pp. 1223.
    22. 22)
      • 12. Minoli, D., Occhiogrosso, B.: ‘Blockchain mechanisms for IoT security’, Internet of Things, 2018, 1–2, pp. 113.
    23. 23)
      • 7. Tan, S.Y., Yeow, K.W., Hwang, S.O.: ‘Enhancement of a lightweight attribute-based encryption scheme for the internet of things’, IEEE Internet Things J., 2019, 6, (4), pp. 63846395.
    24. 24)
      • 22. Castro, M., Liskov, B.: ‘Practical byzantine fault tolerance’. Proc. Int. Conf. Operating Systems Design & Implementation, New Orleans, Louisiana, USA, 1999, pp. 173186.
    25. 25)
      • 3. Flashpoint. Mirai Botnet linked to Dyn DNS DDoS attacks’. Available at https://www.flashpointintel.com/blog/cybercrime/mirai-botnet-linked-dyn-dns-ddos-attacks, accessed 18 December 2018.
    26. 26)
      • 1. Rivera, J., van der Meulen, R.: ‘Forecast alert: internet of things-endpoints and associated services’. Technical Rreport, December 2014.
    27. 27)
      • 14. He, Q., Xu, Y., Liu, Z., et al: ‘A privacy-preserving internet of things device management scheme based on blockchain’, Int. J. Distrib. Sens. Netw., 2018, 14, (11), pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0485
Loading

Related content

content/journals/10.1049/iet-com.2019.0485
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading