access icon free Cooperative caching in fog radio access networks: a graph-based approach

In this study, cooperative caching is investigated in fog radio access networks. To maximise the offloaded traffic, a cooperative caching optimisation problem is formulated. By analysing the relationship between clustering and cooperation and utilising the solutions of the knapsack problems, the above challenging optimisation problem is transformed into a clustering subproblem and a content placement subproblem. To further reduce complexity, the authors propose an effective graph-based approach to solve the two subproblems. In the graph-based clustering approach, a node graph and a weighted graph are constructed. By setting the weights of the vertices of the weighted graph to be the incremental offloaded traffics of their corresponding complete subgraphs, the objective cluster sets can be readily obtained by using an effective greedy algorithm to search for the max-weight independent subset. In the graph-based content placement approach, a redundancy graph is constructed by removing the edges in the complete subgraphs of the node graph corresponding to the obtained cluster sets. Furthermore, they enhance the caching decisions to ensure each duplicate file is cached only once. Compared with traditional approximate solutions, their proposed graph-based approach has lower complexity. Simulation results show remarkable improvements in terms of offloaded traffic by using the proposed approach.

Inspec keywords: optimisation; knapsack problems; pattern clustering; graph theory; set theory; greedy algorithms; radio access networks; cache storage

Other keywords: knapsack problems; node graph; max-weight independent subset; incremental offloaded traffics; content placement subproblem; offloaded traffic; objective cluster sets; effective graph-based approach; challenging optimisation problem; fog radio access networks; clustering subproblem; weighted graph; caching decisions; redundancy graph; graph-based content placement approach; corresponding complete subgraphs; caching optimisation problem

Subjects: Optimisation techniques; Combinatorial mathematics; Optimisation techniques; Radio access systems; Combinatorial mathematics

References

    1. 1)
      • 28. Sanghavi, S., Shah, D., Willsky, A.S.: ‘Message passing for maximum weight independent set’, IEEE Trans. Inf. Theory, 2009, 55, (11), pp. 48224834.
    2. 2)
      • 5. Chae, S., Quek, T., Choi, W.: ‘Content placement for wireless cooperative caching helpers a tradeoff between cooperative gain and content diversity gain’, IEEE Trans. Wirel. Commun., 2017, 16, (10), pp. 67956807.
    3. 3)
      • 18. Tamoor-ul-Hassan, S., Samarakoon, S., Bennis, M., et al: ‘Learning-based caching in cloud-aided wireless networks’, IEEE Commun. Lett., 2018, 22, (1), pp. 137140.
    4. 4)
      • 26. Zhou, L., Hu, X., Ngai, E.C.H., et al: ‘A dynamic graph-based scheduling and interference coordination approach in heterogeneous cellular networks’, IEEE Trans. Veh. Technol., 2015, 65, (5), pp. 37353748.
    5. 5)
      • 12. Chen, Q., Wang, W., Wang, Y., et al: ‘Content caching clustering based on piecewise interest similarity’. 2017 IEEE Global Communications Conf., Singapore, 2017, pp. 16.
    6. 6)
      • 29. Vondrák, J.: ‘Submodularity and curvature: the optimal algorithm’, RIMS Kôkyûroku Bessatsu, 2010, B23, pp. 253266.
    7. 7)
      • 27. Bondy, J.A., Murty, U.S.R.: ‘Graph theory with applications’ (Elsevier, New York, 1976).
    8. 8)
      • 11. Huang, W., Song, T., Yang, Y., et al: ‘Cluster-based cooperative caching with mobility prediction in vehicular named data networking’, IEEE Access, 2019, 7, pp. 2344223458.
    9. 9)
      • 33. Tran, T.X., Le, D.V., Yue, G., et al: ‘Cooperative hierarchical caching and request scheduling in a cloud radio access network’, IEEE Trans. Mob. Comput., 2018, 17, (12), pp. 27292743.
    10. 10)
      • 9. Zheng, G., Suraweera, H., Krikidis, I.: ‘Optimization of hybrid cache placement for collaborative relaying’, IEEE Commun. Lett., 2016, 21, (2), pp. 442445.
    11. 11)
      • 23. Chen, Z., Lee, J., Quek, T., et al: ‘Cooperative caching and transmission design in cluster-centric small cell networks’, IEEE Trans. Wirel. Commun., 2017, 16, (5), pp. 34013415.
    12. 12)
      • 16. Müller, S., Atan, O., Schaar, M., et al: ‘Context-aware proactive content caching with service differentiation in wireless networks’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 10241036.
    13. 13)
      • 20. Liu, J., Bai, B., Zhang, J., et al: ‘Cache placement in Fog-RANs: from centralized to distributed algorithms’, IEEE Trans. Wirel. Commun., 2017, 16, (11), pp. 70397051.
    14. 14)
      • 3. Li, X., Wang, X., Leung, V.C.M.: ‘Weighted network traffic offloading in cache-enabled heterogeneous networks’. Proc. IEEE Int. Conf. on Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 16.
    15. 15)
      • 17. Jiang, Y., Ma, M., Bennis, M., et al: ‘User preference learning based edge caching for fog radio access network’, IEEE Trans. Commun., 2019, 67, (2), pp. 12681283.
    16. 16)
      • 6. Poularakis, K., Iosifidis, G., Argyriou, A., et al: ‘Caching and operator cooperation policies for layered video content delivery’. IEEE INFOCOM 2016 – 35th Annual IEEE Int. Conf. on Computer Communications, San Francisco, CA, USA, 2016, pp. 19.
    17. 17)
      • 10. ElBamby, M.S., Bennis, M., Saad, W., et al: ‘Content-aware user clustering and caching in wireless small cell networks’. Proc. IEEE Int. Symp. on Wireless Communication and Systems, Barcelona, Spain, 2014, pp. 945949.
    18. 18)
      • 21. Ashraf, M.I., Bennis, M., Saad, W.: ‘Dynamic clustering and user association in wireless small cell networks with social considerations’, IEEE Trans. Veh. Technol., 2017, 66, (7), pp. 65536568.
    19. 19)
      • 25. Cui, X., Jiang, Y., Chen, X., et al: ‘Graph-based cooperative caching in Fog-RAN’. 2018 Int. Conf. on Computing, Networking and Communications (ICNC), Maui, Hawaii, USA, 2018, pp. 166171.
    20. 20)
      • 14. Jiang, W., Feng, G., Qin, S., et al: ‘Multi-agent reinforcement learning based cooperative content caching for mobile edge networks’, IEEE Access, 2019, 7, pp. 6185661867.
    21. 21)
      • 32. Chen, M., Hao, Y., Hu, L., et al: ‘Green and mobility-aware caching in 5G networks’, IEEE Trans. Wirel. Commun., 2017, 16, (12), pp. 83478361.
    22. 22)
      • 30. Hoepman, J.: ‘Simple distributed weighted matchings’. Available at http://arxivorg/abs/cs/0410047, 2004.
    23. 23)
      • 22. Wang, R., Zhang, J., Song, S., et al: ‘Mobility-aware caching in D2D networks’, IEEE Trans. Wirel. Commun., 2017, 16, (8), pp. 50015015.
    24. 24)
      • 4. Zhang, S., He, P., Suto, K., et al: ‘Cooperative edge caching in user-centric clustered mobile networks’, IEEE Trans. Mob. Comput., 2018, 17, (8), pp. 17911805.
    25. 25)
      • 7. Sun, Y., Chen, Z., Liu, H.: ‘Delay analysis and optimization in cache-enabled multi-cell cooperative networks’. Proc. IEEE Global Communications Conf. (GLOBECOM), Washington DC, USA, 2016, pp. 17.
    26. 26)
      • 15. Yang, Z., Liu, Y., Chen, Y: ‘Q-learning for content placement in wireless cooperative caching’. 2018 IEEE Global Communications Conf., Abu Dhabi, UAE, 2018, pp. 16.
    27. 27)
      • 8. Shanmugam, K., Golrezaei, N., Dimakis, A., et al: ‘Femtocaching: wireless content delivery through distributed caching helpers’, IEEE Trans. Inf. Theory, 2013, 59, (12), pp. 84028413.
    28. 28)
      • 31. Basagni, S.: ‘Finding a maximal weighted independent set in wireless networks’, Telecommun. Syst., 2001, 18, pp. 155168.
    29. 29)
      • 19. Liu, J., Yan, H., Li, Y., et al: ‘Cache behavior characterization and validation over large-scale video data’, IEEE Trans. Circuits Syst. Video Technol., 2018, 28, (3), pp. 734745.
    30. 30)
      • 13. Han, W., Liu, A., Lau, V.K.N.: ‘Dual-mode user-centric open-loop cooperative caching for backhaul-limited small-cell wireless networks’, IEEE Trans. Wirel. Commun., 2019, 18, (1), pp. 532545.
    31. 31)
      • 1. Peng, M., Yan, S., Zhang, K., et al: ‘Fog-computing-based radio access networks: issues and challenges’, IEEE Netw., 2016, 30, (4), pp. 4653.
    32. 32)
      • 24. Li, X., Wang, X., Zhu, C.: ‘Caching-as-a-service: virtual caching framework in the cloud-based mobile networks’. 2015 IEEE Conf. on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 2015, pp. 372377.
    33. 33)
      • 2. Jiang, W., Feng, G., Qin, S.: ‘Optimal cooperative content caching and delivery policy for heterogeneous cellular networks’, IEEE Trans. Mob. Comput., 2017, 16, (5), pp. 13821393.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0436
Loading

Related content

content/journals/10.1049/iet-com.2019.0436
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading