Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free DAPF: Delay-aware packet forwarding for driving safety and efficiency in vehicular networks

This study proposes an effective delay-aware packet forwarding (DAPF) for driving safety and efficiency in vehicular networks. Vehicular ad hoc networks have been an emerging technology for vehicular communication for the last few decades, but still, it has many challenging issues such as on-time dissemination of message at an emergency situation (e.g. accident and obstacle) to the vehicles having the same route to their destinations. This on-time dissemination can prevent further collision of vehicles and road traffic congestion. In this study, the authors propose an effective way of selecting the processing position of a message among a cluster head, road-side unit (RSU), and vehicular cloud, on the basis of total delivery time and cost. They further show that this effective selection and on-time dissemination helps the upcoming vehicles to select an appropriate route to their destinations. Through simulation results, it is shown that their DAPF outperforms other schemes in terms of packet delivery time.

References

    1. 1)
      • 3. Amadeo, M., Campolo, C., Molinaro, A.: ‘Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs’, Ad Hoc Netw., 2012, 10, pp. 253269.
    2. 2)
      • 24. Chi, J., Do, S., Park, S.: ‘Traffic flow-based roadside unit allocation strategy for VANET’, Int. Conf. on Big Data and Smart Computing (BigComp), Hongkong, China, 2016, pp. 245250.
    3. 3)
      • 16. Wu, C., Ohzahata, S., Kato, T.: ‘A broadcast path diversity mechanism for delay sensitive VANET safety applications’, Vehicular Networking Conf. (VNC), Amsterdam, Netherlands, 2011.
    4. 4)
      • 28. OMNeT++. Network simulation framework. Available at https://omnetpp.org/ accessed on 19 April 2017.
    5. 5)
      • 17. Wu, C., Ohzahata, S., Ji, Y., et al: ‘A MAC protocol for delay-sensitive VANET applications with self-learning contention scheme’, 11th Consumer Communications and Networking Conf. (CCNC), Las Vegas, NV, USA, 2014.
    6. 6)
      • 30. Krajzewicz, D., Erdmann, J., Behrisch, M., et al: ‘Recent development and applications of SUMO – simulation of urban mobility’, Int. J. Adv. Syst. Meas., 2012, 5, (3 & 4), pp. 128138.
    7. 7)
      • 12. Shahwani, H., Mugabarigira, B.A., Shin, J., et al: ‘An effective data processing and data dissemination in vehicular networks’, Int. Conf. on Ubiquitous Information Management and Communication (IMCOM), Langkawi, Malaysia, January 2018.
    8. 8)
      • 7. Sam, D., Cyril Raj, V., Esther Evangelin, T.: ‘A vehicle control system using a time synchronized hybrid VANET to reduce road accidents caused by human error’, Veh. Commun., 2016, 6, pp. 1728.
    9. 9)
      • 18. Li, G., Boukhatem, L.: ‘An intersection-based delay sensitive routing for VANETs using ACO algorithm’, 23rd Int. Conf. on Computer Communication and Networks (ICCCN), Shanghai, China, 2014.
    10. 10)
      • 25. Zhang, L., Yu, B., Pan, J.: ‘GeoMob: a mobility-aware geocast scheme in metropolitans via taxicabs and buses’, IEEE INFOCOM – IEEE Conf. on Computer Communications, Toronto, Canada, 2014, pp. 17791787.
    11. 11)
      • 2. Somasundaram, G., Kavitha, , Ramachandran, K.I.: ‘Lane changing detection and tracking for a safe-lane approach in real time vision based navigation systems’, Int. Conf. On Computer Science, Engineering and Applications (CCSEA), Chennai, India, 2011, pp. 345361.
    12. 12)
      • 15. Zhao, J., Cao, G.: ‘VADD: vehicle-assisted data delivery in vehicular ad hoc networks’, IEEE Trans. Veh. Technol.', 2008, 57, (3), pp. 19101922.
    13. 13)
      • 9. Jia, D., Lu, K., Wang, J., et al: ‘A survey on platoon-based vehicular cyber-physical systems’, IEEE Commun. Surv. Tutor., 2016, 18, (1), pp. 263284.
    14. 14)
      • 5. Salvo, P., Felice, M.D., Cuomo, F., et al: ‘Infotainment traffic flow dissemination in an urban VANET’, Globecom – Ad Hoc and Sensor Networking Symp., Anaheim, CA, USA, 2012.
    15. 15)
      • 26. Jeong, J., Jeong, H., Lee, E., et al: ‘SAINT: self-adaptive interactive navigation tool for cloud-based vehicular traffic optimization’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 40534067.
    16. 16)
      • 22. Wang, Y., Huang, L., Gu, T., et al: ‘Data-driven trafc flow analysis for vehicular communications’, IEEE INFOCOM – IEEE Conf. on Computer Communications, Toronto, Canada, 2014, pp. 19771985.
    17. 17)
      • 10. Rawashdeh, Z.Y., Mahmud, S.M.: ‘A novel algorithm to form stable clusters in vehicular ad hoc networks on highways’, EURASIP J. Wirel. Commun. Netw., 2012, 2012, pp. 113.
    18. 18)
      • 13. Jeong, J.P., Guo, S., Gu, Y.J., et al: ‘Trajectory-based data forwarding for light-traffic vehicular ad hoc networks’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (5), pp. 743757.
    19. 19)
      • 8. Shahwani, H., Bui, T.D., Jeong, J.P., et al: ‘ A stable clustering algorithm based on affinity propagation for VANETs’, Int. Conf. on Advanced Communication Technology (ICACT), Bongpyeong, South Korea, 2017.
    20. 20)
      • 27. Shen, Y., Lee, J., Jeong, H., et al: ‘SAINT+: self-adaptive interactive navigation tool+ for emergency service delivery optimization’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (4), pp. 10381053.
    21. 21)
      • 21. Hyun, S., Kim, J., Kim, H., et al: ‘Interface to network security functions for cloud-based security services’, IEEE Commun. Mag., 2018, 56, (1), pp. 29.
    22. 22)
      • 19. Ding, Y., Xiao, L.: ‘SADV: static-node-assisted adaptive data dissemination in vehicular networks’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 24452455.
    23. 23)
      • 1. Chisalita, I., Shahmehri, N.: ‘A peer-to-peer approach to vehicular communication for the support of traffic safety applications’, IEEE Int. Conf. on Intelligent Transportation Systems, Singapore, Singapore, 2002.
    24. 24)
      • 23. Ge, X., Cheng, H., Mao, G., et al: ‘Vehicular communications for 5G cooperative small-cell networkIEEE Trans. Veh. Technol., 2016, 65, (10), pp. 78827894.
    25. 25)
      • 20. Jeong, J.P., Guo, S., Gu, Y.J., et al: ‘Trajectory-based statistical forwarding for multihop infrastructure-to-vehicle data delivery’, IEEE Trans. Mob. Comput., 2012, 11, (10), pp. 15231537.
    26. 26)
      • 6. ‘National highway traffic safety administration, preliminary statement of policy concerning automated vehicles’, 2013.
    27. 27)
      • 14. Jeong, J.P., Kim, J., Hwang, T., et al: ‘TPD: travel prediction-based data forwarding for light-traffic vehicular networks’, Comput. Netw., 2015, 93, pp. 166182.
    28. 28)
      • 4. Baiocchi, A., Cuomo, F.: ‘Infotainment services based on push-mode dissemination in an integrated VANET and 3G architecture’, J. Commun. Netw., 2013, 15, (2), pp. 179190.
    29. 29)
      • 29. Sommer, C., German, R., Dressler, F.: ‘Bidirectionally coupled network and road traffic simulation for improved IVC analysis’, IEEE Trans. Mob. Comput., 2011, 10, (1), pp. 315.
    30. 30)
      • 11. Almalag, M.S., Weigle, M.C.: ‘Using traffic flow for cluster formation in vehicular ad-hoc networks’, Local Computer Networks (LCN), Denver, CO, USA, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0427
Loading

Related content

content/journals/10.1049/iet-com.2019.0427
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address