access icon free On-demand data forwarding in mobile opportunistic networks: backbone-based approach

Mobile opportunistic networks have been exploited for data forwarding and data offloading in many network scenarios, like the mobile edge networks, due to its low cost and high robustness. Existing data forwarding strategies exploit all available network resources to forward data in a ‘best-effort’ manner. However, they ignore data's heterogeneous delay constraints and may ineffectively assign network resources, resulting in ineffective data forwarding. In this study, the authors improve the existing strategies by proposing a backbone-based on-demand data forwarding strategy, which assign network resources to data items on-demand, according to their delay requirements. Specifically, they first propose an algorithm to extract a backbone structure in the network, where nodes in the backbone structure are responsible for the data forwarding in the whole network. Then, on-demand data forwarding is formalised as an optimisation problem, which selects the minimum number of paths from the backbone to ensure data are delivered on time with high confidence. To address this problem, a path elimination process and a path selection algorithm are proposed to select highly-independent paths according to the delay requirements of data. Evaluation results show that the proposed on-demand strategy can significantly improve the performance of data forwarding in mobile opportunistic networks.

Inspec keywords: routing protocols; mobile radio; telecommunication network routing; optimisation; mobile computing; telecommunication traffic

Other keywords: available network resources; mobile opportunistic networks; backbone structure; existing data forwarding strategies; mobile edge networks; ineffective data forwarding; data items on-demand; data offloading; data item; backbone-based on-demand data forwarding strategy; forward data

Subjects: Protocols; Communication network design, planning and routing; Mobile, ubiquitous and pervasive computing; Mobile radio systems

References

    1. 1)
      • 2. Vahdat, A., Becker, D., et al: ‘Epidemic routing for partially connected ad hoc networks’. Technical Report CS-200006, Tech. Rep., Duke University, 2000.
    2. 2)
      • 10. Chaintreau, A., Hui, P., Crowcroft, J., et al: ‘Impact of human mobility on opportunistic forwarding algorithms’, IEEE Trans. Mob. Comput., 2007, 6, (6), pp. 606620.
    3. 3)
      • 4. Spyropoulos, T., Psounis, K., Raghavendra, C.: ‘Spray and wait: an efficient routing scheme for intermittently connected mobile networks’. ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, Pennsylvania, USA, 2005.
    4. 4)
      • 14. Zhang, X., Cao, G.: ‘Transient community detection and its application to data forwarding in delay tolerant networks’, IEEE/ACM Trans. Netw., 2017, 25, (5), pp. 28292843.
    5. 5)
      • 16. Wu, D., Zhang, F., Wang, H., et al: ‘Security-oriented opportunistic data forwarding in mobile social networks’, Future Gener. Comput. Syst., 2018, 87, pp. 803815.
    6. 6)
      • 7. Gao, W., Cao, G.: ‘User-centric data dissemination in disruption tolerant networks’. IEEE INFOCOM, Shanghai, China, 2011.
    7. 7)
      • 8. Gao, W., Li, Q., Zhao, B., et al: ‘Multicasting in delay tolerant networks: a social network perspective’. ACM MobiHoc, New Orleans, Louisiana, USA, 2009.
    8. 8)
      • 9. Madan, A., Cebrian, M., Moturu, S., et al: ‘Sensing the health state of a community’, Pervasive Comput., 2012, 11, (4), pp. 3645.
    9. 9)
      • 19. Li, Y., Zhang, Z., Wang, H., et al: ‘Sers: social-aware energy-efficient relay selection in D2D communications’, IEEE Trans. Veh. Technol., 2018, 67, (6), pp. 53315345.
    10. 10)
      • 6. Hui, P., Crowcroft, J., Yoneki, E.: ‘Bubble rap: social-based forwarding in delay-tolerant networks’, IEEE Trans. Mob. Comput., 2011, 10, (11), pp. 15761589.
    11. 11)
      • 13. Bolch, G., Greiner, S., De Meer, H., et al: ‘Queueing networks and Markov chains: modeling and performance evaluation with computer science applications’ (John Wiley & Sons, USA, 2006).
    12. 12)
      • 20. Kui, X., Samanta, A., Zhu, X., et al: ‘Energy-aware temporal reachability graphs for time-varying mobile opportunistic networks’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 98319844.
    13. 13)
      • 17. Xu, Q., Su, Z., Guo, S.: ‘A game theoretical incentive scheme for relay selection services in mobile social networks’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 66926702.
    14. 14)
      • 21. Wei, K., Dong, M., Ota, K., et al: ‘Camf: context-aware message forwarding in mobile social networks’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (8), pp. 21782187.
    15. 15)
      • 3. Harras, K.A., Almeroth, K.C., Belding-Royer, E.M.: ‘Delay tolerant mobile networks (DTMNS): controlled flooding in sparse mobile networks’. NETWORKING, Waterloo, Ontario, Canada, 2005, pp. 11801192.
    16. 16)
      • 15. Osuki, T., Sakai, K., Fukumoto, S.: ‘Contact avoidance routing in delay tolerant networks’. IEEE INFOCOM, Atlanta, Georgia, USA, 2017.
    17. 17)
      • 18. Ning, T., Liu, Y., Yang, Z., et al: ‘Incentive mechanisms for data dissemination in autonomous mobile social networks’, IEEE Trans. Mob. Comput., 2017, 16, (11), pp. 30843099.
    18. 18)
      • 11. Michael, R.G., David, S.J.: ‘Computers and intractability: a guide to the theory of np-completeness’ (WH Freeman & Co., San Francisco, 1979).
    19. 19)
      • 12. Guha, S., Khuller, S.: ‘Approximation algorithms for connected dominating sets’, Algorithmica, 1998, 20, (4), pp. 374387.
    20. 20)
      • 5. Lindgren, A., Doria, A., Schelén, O.: ‘Probabilistic routing in intermittently connected networks’. ACM SIGMOBILE CCR, Annapolis, Maryland, USA, 2003, pp. 1920.
    21. 21)
      • 1. Zhao, J., Zhang, X., Cao, G., et al: ‘Expertise-based data access in content-centric mobile opportunistic networks’. IEEE Int. Conf. on Mobile Ad Hoc and Sensor Systems (MASS), Philadelphia, Pennsylvania, USA, 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0308
Loading

Related content

content/journals/10.1049/iet-com.2019.0308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading