access icon free Tracking areas planning based on spectral clustering in small cell networks

In future small cell networks, tracking areas (TAs) that are defined for location management will be updated frequently to cope with the massive signalling overhead. In this study, a TA planning method based on spectral clustering is proposed to minimise the network signalling overhead. Firstly, handover and paging statistics are simulated to construct a series of graphs showing user mobility and traffic. Then, the TA planning problem is formulated as a classical graph partitioning problem. Finally, a new TA planning method based on spectral clustering is used to build the new TA plan. Simulation results show that the proposed method can effectively reduce the system location update rate and signalling overhead, and improve the system performance.

Inspec keywords: pattern clustering; graph theory; cellular radio; telecommunication signalling; telecommunication network planning

Other keywords: paging statistics; tracking areas; classical graph partitioning problem; handover statistics; massive signalling overhead; user traffic; location management; network signalling overhead; TA planning problem; small cell networks; TA planning method; spectral clustering; user mobility

Subjects: Mobile radio systems; Communication network design, planning and routing; Combinatorial mathematics

References

    1. 1)
      • 24. Mandal, S., Saha, D., Mahanti, A.: ‘Heuristic search techniques for cell to switch assignment in location area planning for cellular networks’. IEEE Int. Conf. on Communications, Paris, France, France, 2004.
    2. 2)
      • 22. Taheri, J., Zomaya, A.Y.: ‘A genetic algorithm for finding optimal location area configurations for mobility management’. IEEE Conf. on Local Computer Networks, Sydney, NSW, Australia, 2005.
    3. 3)
      • 5. Wu, S., Zeng, Z., Xia, H.: ‘Coalition-based sleep mode and power allocation for energy efficiency in dense small cell networks’, IET Commun., 2017, 11, (11), pp. 16621670.
    4. 4)
      • 23. Ali, S.Z.: ‘Design of location areas for cellular mobile radio networks’. IEEE Vehicular Technology Conf., Birmingham, AL, USA, USA, 2002.
    5. 5)
      • 11. Hosseini, M., Azar, F.T.: ‘A new eigenvector selection strategy applied to develop spectral clustering’, Multidimens. Syst. Signal Process., 2010, 28, (4), pp. 121124.
    6. 6)
      • 13. Munir, K., Zahoor, E., Rahim, R., et al: ‘Secure and fault-tolerant distributed location management for intelligent 5G wireless networks’, IEEE Access, 2018, 6, pp. 11.
    7. 7)
      • 31. Aghababaiyan, K., Shah-Mansouri, V, Maham, B.: ‘Axonal channel capacity in neuro-spike communication’, IEEE Trans. Nanobiosc., 2018, 17, (1), pp. 7887.
    8. 8)
      • 30. Andrews, J.G., Baccelli, F., Ganti, R.K.: ‘A tractable approach to coverage and rate in cellular networks’, Wirel. Netw., 2011, 59, (11), pp. 31223134.
    9. 9)
      • 6. Yassin, M., Lahoud, S., Ibrahim, M., et al: ‘Cooperative resource management and power allocation for multiuser OFDMA networks’, IET Commun., 2017, 11, (16), pp. 25522559.
    10. 10)
      • 2. Hoadley, J., Maveddat, P.: ‘Enabling small cell deployment with HetNet’, IEEE Wirel. Commun., 2015, 19, (2), pp. 45.
    11. 11)
      • 28. Chen, L., Liu, H.L., Fan, Z., et al: ‘Modeling the tracking area planning problem using an evolutionary multi-objective algorithm’, IEEE Comput. Intell. Mag., 2017, 12, (1), pp. 2941.
    12. 12)
      • 25. Fu, H.L., Lin, P., Lin, Y.B.: ‘Reducing signaling overhead for Femtocell/Macrocell networks’, IEEE Trans. Mob. Comput., 2013, 12, (8), pp. 15871597.
    13. 13)
      • 29. Ning, L., Wang, Z., Li, D., et al: ‘Tracking areas planning based on community detection in heterogeneous and small cell networks’, Mob. Netw. Appl., 2016, 22, (3), pp. 110.
    14. 14)
      • 1. Lopez-Perez, D., Ding, M., Claussen, H., et al: ‘Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 20782101.
    15. 15)
      • 33. Yuksel, B., Cingoz, M., Karabulut, G., et al: ‘Call arrival model for GSM network including handover’. IEEE Int. Symp. on Advanced Networks and Telecommunication Systems, New Delhi, India, 2009, pp. 13.
    16. 16)
      • 27. Soper, A.J., Walshaw, C., Cross, M.: ‘A combined evolutionary search and multilevel approach to graph partitioning’, J. Global Optim., 2004, 29, (2), pp. 225241.
    17. 17)
      • 17. Hayashida, T., Nishizaki, I., Sekizaki, S., et al: ‘Distance-based clustering of population and intergroup cooperative particle swarm optimization’. IEEE Int. Conf. on Systems, Man and Cybernitics, Budapest, Hungary, 2017, pp. 001359001364.
    18. 18)
      • 20. Li, K.: ‘Analysis of distance-based location management in wireless communication networks’, IEEE Trans. Parallel Distrib. Syst., 2012, 24, (2), pp. 225238.
    19. 19)
      • 19. Vondra, M., Becvar, Z.: ‘Distance-based neighborhood scanning for handover purposes in network with small cells’, IEEE Trans. Veh. Technol., 2016, 62, (2), pp. 883895.
    20. 20)
      • 18. Ernest, P.P., Chan, H.A., Falowo, O.E., et al: ‘Network-based distributed mobility management for network mobility’. IEEE Consumer Communications and Consumer Conference (CCNC) IEEE, Las Vegas, NV, USA, 2014, pp. 417425.
    21. 21)
      • 7. Mukherjee, A., De, D.: ‘Location management in mobile network: a survey’, Comput. Sci. Rev., 2016, 19, (C), pp. 114.
    22. 22)
      • 16. Wang, X., Li, K., Cheng, R, et al: ‘Cost analysis of a hybrid-movement-based and time-based location update scheme in cellular networks’, IEEE Trans. Veh. Technol., 2016, 64, (11), pp. 53145326.
    23. 23)
      • 10. Abbasi, A.A., Younis, M.: ‘A survey on clustering algorithms for wireless sensor networks’, Comput. Commun., 2010, 30, (14), pp. 28262841.
    24. 24)
      • 12. Chen, I.R., Chen, T.M., Lee, C.: ‘Performance evaluation of forwarding strategies for location management in mobile networks’, Comput. J., 2018, 41, (4), pp. 243253.
    25. 25)
      • 3. Yu, Y., Gu, D.: ‘The cost efficient location management in the LTE picocell/macrocell network’, IEEE Commun. Lett., 2013, 17, (5), pp. 904907.
    26. 26)
      • 9. Lee, C.P., Huang, K.F., Lin, P., et al: ‘Reducing handover cost for LTE femtocell/macrocell network’. IEEE GLOBECOM Workshops, Atlanta, GA, USA, 2012, pp. 49884993.
    27. 27)
      • 26. Toril, M., Luna-Ramirez, S., Wille, V.: ‘Automatic replanning of tracking areas in cellular networks’, IEEE Trans. Veh. Technol., 2013, 62, (5), pp. 20052013.
    28. 28)
      • 32. Camp, T., Boleng, J., Davies, V.: ‘A survey of mobility models for ad hoc network research’, Wirel. Commun. Mob. Comput., 2010, 2, (5), pp. 483502.
    29. 29)
      • 15. Heeseon, L., Wanjong, C.: ‘Interworking of SMS between GSM based GMPCS system and IS-41 based cellular system using I-SMC’. WCNC. 1999 IEEE Wireless Communications and Networking Conf. (Cat. No. 99TH8466), New Orleans, LA, USA, 1999, vol. 3, pp. 14321436.
    30. 30)
      • 4. Aghababaiyan, K., Maham, B.: ‘QoS-aware downlink radio resource management in OFDMA-based small cells networks’, IET Commun., 2017, 12, (4), pp. 441448.
    31. 31)
      • 21. Zhao, Q., Liew, S.C., Zhang, S., et al: ‘Distance-based location management utilizing initial position for mobile communication networks’, IEEE Trans. Mob. Comput., 2015, 15, (1), pp. 107120.
    32. 32)
      • 8. Chen, W.H., Ren, Y., Chen, J.C.: ‘Design and analysis of a threshold offloading (TO) algorithm for LTE femtocell/macrocell networks’, IEEE Comput. Commun., 2012, pp. 12701275.
    33. 33)
      • 14. Gu, G., Peng, G.: ‘The survey of GSM wireless communication system’. 2010 Int. Conf. on Computer and Information Application, Tianjin, 2017, vol. 99, pp. 11.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0306
Loading

Related content

content/journals/10.1049/iet-com.2019.0306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading