access icon free An interference-aware energy-efficient routing algorithm with quality of service requirements for software-defined WSNs

To address the energy-efficient (EE) routing problem in software-defined wireless sensor networks (SDWSNs), in this study, a centralised routing algorithm, namely, the interference-aware EE routing algorithm (IA-EERA), is proposed to extend the network lifetime (NL) in SDWSNs. Both the link quality of service requirements and the balance between the link energy loads are considered in the proposed IA-EERA when selecting the EE relays. Concretely, the IA-EERA comprises the EE relay selection (RS) and the centralised relay scheduling schemes, which are responsible for generating a valid link set with RS priorities and scheduling the eligible relay nodes with expected link rates from the valid link set, respectively. For supporting the network compatibility and scalability, we propose a hierarchical SDWSN based network architecture, upon which the IA-EERA can be devoted to solving the EE routing problem in the relay layer of SDWSN. Simulation results show that for one data source without interference, the proposed IA-EERA can significantly improve the NL compared with the traditional routing algorithm utilising the energy efficiency maximisation. For multiple data sources incurring interference at nodes, the IA-EERA is able to reduce the NL-dropping rate by adjusting the interference-aware parameter that affects the RS priorities

Inspec keywords: telecommunication network routing; energy conservation; quality of service; telecommunication scheduling; telecommunication power management; relay networks (telecommunication); wireless sensor networks; software defined networking

Other keywords: energy efficiency maximisation; network compatibility; software-defined WSN; software-defined wireless sensor networks; expected link rates; eligible relay node scheduling; centralised relay scheduling schemes; centralised routing algorithm; hierarchical network architecture; relay layer; link energy loads; relay-selection priorities; network lifetime; interference-aware energy-efficient routing algorithm; interference-aware parameter; NL-dropping rate; EE relay selection; quality of service requirements; link quality; EE routing problem; IA-EERA

Subjects: Communication network design, planning and routing; Wireless sensor networks; Computer communications; Other computer networks; Telecommunication systems (energy utilisation)

References

    1. 1)
      • 14. Chen, Y., Zhao, Q.: ‘On the lifetime of wireless sensor networks’, IEEE Commun. Lett., 2005, 9, (11), pp. 976978.
    2. 2)
      • 3. Haque, I.T., Abu-Ghazaleh, N.: ‘Wireless software defined networking: a survey and taxonomy’, IEEE Commun. Surv. Tutor., 2016, 18, (4), pp. 27132737.
    3. 3)
      • 30. Jain, R., Chiu, D.M., Hawe, W.: ‘A quantitative measure of fairness and discrimination for resource allocation in shared systems’. DEC-TR-301, Technical Report, Digital Equipment Corporation, 1984, pp. 1–38.
    4. 4)
      • 5. Luo, T., Tan, H.P., Quek, T.Q.S.: ‘Sensor openflow: enabling software-defined wireless sensor networks’, IEEE Commun. Lett., 2012, 16, (11), pp. 18961899.
    5. 5)
      • 8. Buzzi, S., I, C.L., Klein, T.E., et al: ‘A survey of energy-efficient techniques for 5G networks and challenges ahead’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 697709.
    6. 6)
      • 6. Cicioglu, M., Çalhan, A.: ‘HUBsFLOW: a novel interface protocol for SDN-enabled WBANs’, Comput. Netw., 2019, 160, (4), pp. 105117.
    7. 7)
      • 20. Cardieri, P.: ‘Modeling interference in wireless ad hoc networks’, IEEE Commun. Surv. Tutor., 2010, 12, (4), pp. 551572.
    8. 8)
      • 4. Kobo, H.I., Abu-Mahfouz, A.M., Hancke, G.P.: ‘A survey on software-defined wireless sensor networks: challenges and design requirements’, IEEE Access, 2017, 5, pp. 18721899.
    9. 9)
      • 15. Bhardwaj, M., Garnett, T., Chandrakasan, A.P.: ‘Upper bounds on the lifetime of sensor networks’. IEEE Int. Conf. on Communications, Helsinki, June 2001, pp. 785790.
    10. 10)
      • 19. Gao, Y., Hou, J.C., Nguyen, H.: ‘Topology control for maintaining network connectivity and maximizing network capacity under the physical model’. IEEE 27th Conf. on Computer Communications (INFOCOM), Phoenix, AZ, April 2008, pp. 16871695.
    11. 11)
      • 24. Muruganathan, S.D., Ma, D.C.F., Bhasin, R.I., et al: ‘A centralized energy-efficient routing protocol for wireless sensor networks’, IEEE Commun. Mag., 2005, 43, (3), pp. S8S13.
    12. 12)
      • 29. Ding, Z., Shen, L., Yan, F., et al: ‘Energy-efficient routing algorithm with interference mitigation for software-defined wireless sensor networks’. IEEE 29th Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, September 2018, pp. 15.
    13. 13)
      • 10. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: ‘Energy-efficient routing protocols in wireless sensor networks: a survey’, IEEE Commun. Surv. Tutor., 2013, 15, (2), pp. 551591.
    14. 14)
      • 12. Ehsan, S., Hamdaoui, B.: ‘A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks’, IEEE Commun. Surv. Tutor., 2012, 14, (2), pp. 265278.
    15. 15)
      • 22. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘An application-specific protocol architecture for wireless microsensor networks’, IEEE Trans. Wirel. Commun., 2002, 1, (4), pp. 660670.
    16. 16)
      • 1. Yetgin, H., Cheung, K.T.K., El-Hajjar, M., et al: ‘A survey of network lifetime maximization techniques in wireless sensor networks’, IEEE Commun. Surv. Tutor., 2017, 19, (2), pp. 828854.
    17. 17)
      • 26. Xiang, W., Wang, N., Zhou, Y.: ‘An energy-efficient routing algorithm for software-defined wireless sensor networks’, IEEE Sens. J., 2016, 16, (20), pp. 73937400.
    18. 18)
      • 17. Luo, J., Hu, D.W.J., Li, R.: ‘Opportunistic routing algorithm for relay node selection in wireless sensor networks’, IEEE Trans. Ind. Inf., 2015, 11, (1), pp. 112121.
    19. 19)
      • 16. Zhang, H., Shen, H.: ‘Energy-efficient beaconless geographic routing in wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2010, 21, (6), pp. 881896.
    20. 20)
      • 11. Hao, J., Zhang, B., Mouftah, H.T.: ‘Routing protocols for duty cycled wireless sensor networks: A survey’, IEEE Commun. Mag., 2012, 50, (12), pp. 116123.
    21. 21)
      • 2. Eslaminejad, M., Razak, S.A.: ‘Fundamental lifetime mechanisms in routing protocols for wireless sensor networks: a survey and open issues’, Sensors, 2012, 12, (10), pp. 1350813544.
    22. 22)
      • 25. Zeng, D., Li, P., Guo, S., et al: ‘Energy minimization in multi-task software-defined sensor networks’, IEEE Trans. Comput., 2015, 64, (11), pp. 31283139.
    23. 23)
      • 13. Ergen, S.C., Varaiya, P.: ‘On multi-hop routing for energy efficiency’, IEEE Commun. Lett., 2005, 9, (10), pp. 880881.
    24. 24)
      • 28. Gutierrez, J.A., Callaway, E.H., Barrett, R.: ‘IEEE 802.15.4 low-rate wireless personal area networks: enabling wireless sensor networks’ (IEEE Standards Office, New York, NY, USA, 2003, 1st edn.).
    25. 25)
      • 21. Xu, Y., Shen, L., Wu, P.: ‘Performance analysis and relay selection region for interfered opportunistic relaying wireless sensor and ad hoc networks’, IET Wirel. Sens. Syst., 2012, 2, (3), pp. 253261.
    26. 26)
      • 18. Zanella, A., Bazzi, A., Masini, B.M.: ‘Relay selection analysis for an opportunistic two-hop multi-user system in a poisson field of nodes’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 12811293.
    27. 27)
      • 7. Bera, S., Misra, S., Roy, S.K., et al: ‘Soft-WSN: software-defined WSN management system for IoT applications’, IEEE Syst. J., 2018, 12, (3), pp. 20742081.
    28. 28)
      • 23. Younis, O., Fahmy, S.: ‘HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks’, IEEE Trans. Mob. Comput., 2004, 3, (4), pp. 366379.
    29. 29)
      • 31. Ding, Z., Shen, L., Yan, F., et al: ‘Energy-efficient relay selection with blockage for LOS transmissions in wireless sensor networks’. IEEE 88th Vehicular Technology Conf. (VTC Fall), Chicago, USA, August 2018, pp. 15.
    30. 30)
      • 27. Li, P., Wu, M., Liao, W., et al: ‘A game-theoretic and energy-efficient algorithm in an improved software-defined wireless sensor network’, IEEE Access, 2017, 5, pp. 1343013445.
    31. 31)
      • 9. Feng, D., Jiang, C., Lim, G., et al: ‘A survey of energy-efficient wireless communications’, IEEE Commun. Surv. Tutor., 2013, 15, (1), pp. 167178.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0264
Loading

Related content

content/journals/10.1049/iet-com.2019.0264
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading