http://iet.metastore.ingenta.com
1887

Deep neural network-based underwater OFDM receiver

Deep neural network-based underwater OFDM receiver

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Due to the characteristics of the underwater acoustic (UWA) channel, the process at the receiver is complicated to match the channel. To simplify receiver design and match UWA channel better, this study proposes a deep neural network-based orthogonal frequency division multiplexing receiver for UWA communication. Different from existing receivers needing a neural network and several other processing parts, the proposed receiver only uses a single neural network to implement the whole signal processing. Moreover, it is a general receiver which is suitable for other modulation schemes. Simulation results show that the proposed receiver offers better bit error rate performance over traditional ones.

References

    1. 1)
      • 1. Shen, Y., Martinez, E.: ‘Channel estimation in OFDM systems’. Freescale semiconductor application note, 2006, pp. 1–15.
    2. 2)
      • 2. Ballal, T., Al-Naffouri, T.Y., Ahmed, S.F.: ‘Low-complexity Bayesian estimation of cluster-sparse channels’, IEEE Trans. Commun., 2015, 63, (11), pp. 41594173.
    3. 3)
      • 3. Kaddouri, S., Beaujean, P.J., Bouvet, P., et al: ‘Least square and trended doppler estimation in fading channel for high-frequency underwater acoustic communications’, IEEE J. Ocean. Eng., 2014, 39, (1), pp. 179188.
    4. 4)
      • 4. Zhang, Y., Liu, L., Sun, D., et al: ‘Single-carrier underwater acoustic communication combined with channel shortening and dichotomous coordinate descent recursive least squares with variable forgetting factor’, IET Commun., 2015, 9, (15), pp. 18671876.
    5. 5)
      • 5. Qiao, G., Song, Q., Ma, L., et al: ‘A low-complexity orthogonal matching pursuit based channel estimation method for time-varying underwater acoustic OFDM systems’, Appl. Acoust., 2019, 148, pp. 246250.
    6. 6)
      • 6. Wang, N., Gao, X., Sun, L., et al: ‘Anchored neighborhood index for face sketch synthesis’, IEEE Trans. Circuits Syst. Video Technol., 2018, 28, (9), pp. 21542163.
    7. 7)
      • 7. Jong, N.S., Phukpattaranont, P.: ‘A speech recognition system based on electromyography for the rehabilitation of dysarthric patients: a thai syllable study’, Biocybernetics and Biomedical Engineering, 2019, 39, (1), pp. 234245.
    8. 8)
      • 8. Lippi, M., Montemurro, M.A., Degli Esposti, M., et al: ‘Natural language statistical features of lstm-generated texts’, IEEE Trans. Neural Netw. Learn. Syst., 2019.
    9. 9)
      • 9. Çalişkan, A., Cevik, U.: ‘An efficient noisy pixels detection model for CT images using extreme learning machines’, Tehnički Vjesnik, 2018, 25, (3), pp. 679686.
    10. 10)
      • 10. O'Shea, T.J., Corgan, J., Clancy, T.C.: ‘Convolutional radio modulation recognition networks’, in Iliadis, C., Jayne, L (Ed.): ‘Engineering applications of neural networks’ (Springer International Publishing, Cham, 2016), pp. 213226.
    11. 11)
      • 11. Khan, F., Lu, C., Lau, A.: ‘Joint modulation format/bit-rate classification and signal-to-noise ratio estimation in multipath fading channels using deep machine learning’, Electron. Lett., 2016, 52, (14), pp. 12721274.
    12. 12)
      • 12. Li, R., Li, L., Yang, S., et al: ‘Robust automated vhf modulation recognition based on deep convolutional neural networks’, IEEE Commun. Lett., 2018, 22, (5), pp. 946949.
    13. 13)
      • 13. O'Shea, T.J., Karra, K., Clancy, T.C.: ‘Learning to communicate: channel auto-encoders, domain specific regularizers, and attention’. 2016 IEEE Int. Symp. on Signal Processing and Information Technology (ISSPIT), Limassol, December 2016, pp. 223228.
    14. 14)
      • 14. O'Shea, T., Hoydis, J.: ‘An introduction to deep learning for the physical layer’, IEEE Trans. Cognit. Commun. Netw., 2017, 3, (4), pp. 563575.
    15. 15)
      • 15. Dörner, S., Cammerer, S., Hoydis, J., et al: ‘Deep learning based communication over the air’, IEEE J. Sel. Top. Signal Process., 2018, 12, (1), pp. 132143.
    16. 16)
      • 16. Felix, A., Cammerer, S., Dörner, S., et al: ‘OFDM-autoencoder for end-to-end learning of communications systems’. 2018 IEEE 19th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018, pp. 15.
    17. 17)
      • 17. Ye, H., Li, G.Y., Juang, B.: ‘Power of deep learning for channel estimation and signal detection in OFDM systems’, IEEE Wirel. Commun. Lett., 2018, 7, (1), pp. 114117.
    18. 18)
      • 18. Gao, X., Jin, S., Wen, C.-K., et al: ‘Comnet: combination of deep learning and expert knowledge in OFDM receivers’, IEEE Commun. Lett., 2018, 22, (12), pp. 26272630.
    19. 19)
      • 19. Zhao, Z.: ‘Deep-waveform: a learned OFDM receiver based on deep complex convolutional networks’, 2018, arXiv preprint arXiv:1810.07181.
    20. 20)
      • 20. Chen, Z., He, Z., Niu, K., et al: ‘Neural network-based symbol detection in high-speed ofdm underwater acoustic communication’. 2018 10th Int. Conf. on Wireless Communications and Signal Processing (WCSP), Hangzhou, October 2018, pp. 15.
    21. 21)
      • 21. Jiang, R., Wang, X., Cao, S., et al: ‘Deep neural networks for channel estimation in underwater acoustic OFDM systems’, IEEE Access, 2019, PP, pp. 11.
    22. 22)
      • 22. Zhang, Y., Li, J., Zakharov, Y., et al: ‘Underwater acoustic OFDM communications using deep learning’, 2018.
    23. 23)
      • 23. Qarabaqi, P., Stojanovic, M.: ‘Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels’, IEEE J. Ocean. Eng., 2013, 38, (4), pp. 701717.
    24. 24)
      • 24. Ruiz-Vega, F., Clemente, M.C., Otero, P., et al: ‘Ricean shadowed statistical characterization of shallow water acoustic channels for wireless communications’, 2011, arXiv preprint:1112.4410.
    25. 25)
      • 25. Socheleau, F.-X., Laot, C., Passerieux, J.-M.: ‘Stochastic replay of non-wssus underwater acoustic communication channels recorded at sea’, IEEE Trans. Signal Process., 2011, 59, (10), pp. 48384849.
    26. 26)
      • 26. Schmidhuber, J.: ‘Deep learning in neural networks: an overview’, Neural Netw., 2015, 61, pp. 85117, Available at http://www.sciencedirect.com/science/article/pii/S0893608014002135.
    27. 27)
      • 27. Stojanovic, M., Preisig, J.: ‘Underwater acoustic communication channels: propagation models and statistical characterization’, IEEE Commun. Mag., 2009, 47, (1), pp. 8489.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0243
Loading

Related content

content/journals/10.1049/iet-com.2019.0243
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address