© The Institution of Engineering and Technology
A usercentric wireless cellular network has recently emerged as a pragmatic network model for better reflecting the traffic demandbased deployment. To the best of authors' knowledge, however, the coverage probability with composite – shadowed and lognormal shadowed fading [termed the doublyselective (DS) fading] in downlink usercentric wireless cellular networks is unknown. Most importantly, another significant performance metric, i.e. the average rate, until now has not been investigated. To study the influence of the DS fading on performance metrics and avoid unnecessary handovers caused by the random fluctuation of the lognormal shadowing at the cellassociation phase, this work considers the downlink usercentric wireless cellular network with the DS fading and the closest cellassociation rule. Furthermore, the closedform expressions for the coverage probability and average rate in downlink usercentric wireless cellular networks are successfully derived. Numerical results demonstrate that the usercentric wireless cellular network not only provides a high coverage probability but also promotes the average rate compared to the Poisson point processbased network with independent uniformly distributed users.
References


1)

1. Parkvall, S., Furuskar, A., Dahlman, E.: ‘Evolution of LTE toward IMTadvanced’, IEEE Commun. Mag., 2011, 49, (2), pp. 84–91.

2)

2. Boccardi, F., Heath, R.W., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Commun. Mag., 2014, 52, (2), pp. 74–80.

3)

3. Peng, M., Wang, C., Li, J., et al: ‘Recent advances in underlay heterogeneous networks: Interference control, resource allocation, and selforganization’, IEEE Commun. Surv. Tutor., 2015, 17, (2), pp. 700–729.

4)

4. Elsawy, H., Hossain, E., Haenggi, M.: ‘Stochastic geometry for modeling, analysis, and design of multitier and cognitive cellular wireless networks: a survey’, IEEE Commun. Surv. Tutor., 2013, 13, (3), pp. 996–1019.

5)

5. ElSawy, H., SultanSalem, A., Alouini, M.S., et al: ‘Modeling and analysis of cellular networks using stochastic geometry: a tutorial’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 167–203.

6)

6. Andrews, J.G., Gupta, A.K., Dhillon, H.S.: .

7)

7. Andrews, J.G., Baccelli, F., Ganti, R.: ‘A tractable approach to coverage and rate in cellular networks’, IEEE Trans. Commun., 2011, 59, (11), pp. 3122–3134.

8)

8. Dhillon, H.S., Ganti, R.K., Baccelli, F., et al: ‘Modeling and analysis of Ktier downlink heterogeneous cellular networks’, IEEE J. Sel. Areas Commun., 2012, 30, (3), pp. 550–560.

9)

9. Jo, H.S., Sang, Y.J., Xia, P., et al: ‘Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis’, IEEE Trans. Wirel. Commun., 2012, 11, (10), pp. 3484–3495.

10)

10. Saha, C., Afshang, M., Dhillon, H.S.: ‘Enriched Ktier hetnet model to enable the analysis of usercentric small cell deployments’, IEEE Trans. Wirel. Commun., 2017, 16, (3), pp. 1593–1608.

11)

11. Dhillon, H.S., Ganti, R.K., Andrews, J.G.: ‘Modeling nonuniform UE distributions in downlink cellular networks’, IEEE Wirel. Commun. Lett., 2013, 2, (3), pp. 339–342.

12)

12. Mankar, P.D., Das, G., Pathak, S.S.: ‘Modeling and coverage analysis of BScentric clustered users in a random wireless network’, IEEE Wirel. Commun. Lett., 2016, 5, (2), pp. 208–211.

13)

13. Dhillon, H.S., Andrews, J.G.: ‘Downlink rate distribution in heterogeneous cellular networks under generalized cell selection’, IEEE Wirel. Commun. Lett., 2014, 3, (1), pp. 42–45.

14)

14. Paris, J.F.: ‘Statistical characterization of κ–μ shadowed fading’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 518–526.

15)

15. MorenoPozas, L., LopezMartinez, F.J., Paris, J., et al: ‘The κ–μ shadowed fading model: Unifying the κ–μ and η–μ distributions’, IEEE Trans. Veh. Technol., 2016, 65, (12), pp. 9630–9641.

16)

16. Parthasarathy, S., Ganti, R.K.: ‘Coverage analysis in downlink Poisson cellular network with κ–μ shadowed fading’, IEEE Wirel. Commun. Lett., 2017, 6, (1), pp. 10–13.

17)

17. Trigui, I., Affes, S., Liang, B.: ‘Unified stochastic geometry modeling and analysis of cellular networks in LOS/NLOS and shadowed fading’, IEEE Trans. Commun., 2017, 65, (12), pp. 5470–5486.

18)

18. Chun, Y.J., Cotton, S.L., Dhillon, H.S., et al: ‘A comprehensive analysis of 5G heterogeneous cellular systems operating over κ–μ shadowed fading channels’, IEEE Trans. Wirel. Commun., 2017, 16, (11), pp. 6995–7010.

19)

19. Cho, K., Lee, J., Kang, C.G.: ‘Stochastic geometrybased coverage and rate analysis under Nakagami and lognormal composite fading channel for downlink cellular networks’, IEEE Commun. Lett., 2017, 21, (6), pp. 1437–1440.

20)

20. Chen, J., Yuan, C.: ‘Coverage analysis of usercentric wireless network in a comprehensive fading environment’, IEEE Commun. Lett., 2018, 22, (7), pp. 1446–1449.

21)

21. LopezMartinez, F.J., Paris, J.F., RomeroJerez, J.M.: ‘The κ–μ shadowed fading model with integer fading parameters’, IEEE Trans. Veh. Technol., 2017, 66, (9), pp. 7653–7662.

22)

22. Chen, J., Yuan, C.: ‘Coverage analysis of downlink Poisson networks with double shadowed fading’, IET Commun., 2019, 13, (13), 1945–1952, .

23)

23. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (Dover, New York, 1972, 9th edn.).

24)

24. Gradshteyn, I.S., Ryzhik, I.M.: ‘Tables of integrals, series, products’ (Academic, San Diego, 2007, 7th edn.).

25)

25. Renzo, M.D., Guidotti, A., Corazza, G.E.: ‘Average rate of downlink heterogeneous cellular networks over generalized fading channels: a stochastic geometry approach’, IEEE Trans. Commun., 2013, 61, (7), pp. 3050–3071.

26)

26. Shojaeifard, A., Hamdi, K.A., Alsusa, E., et al: ‘Exact SINR statistics in the presence of heterogeneous interferers’, IEEE Trans. Inf. Theory, 2015, 61, (12), pp. 518–526.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2019.0220
Related content
content/journals/10.1049/ietcom.2019.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6