Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance of grey-coded IQM-based optical modulation formats on high-speed long-haul optical communication link

In this article the performance of grey-coded advanced optical modulation formats is evaluated on a single-channel high-speed long-haul optical communication link and are compared to the respective differential-coded modulation formats. Polarisation division multiplexed optical in-phase quadrature modulator (IQM) structure and homodyne detection scheme are used to realise 100 Gbps quadrature phase-shift keying (QPSK), 120 Gbps 16-ary quadrature amplitude modulation (16-QAM), 360 Gbps 32-QAM and 480 Gbps 64-QAM modulation formats. Advanced digital signal processing unit with various pre-processing and recovery stages such as direct current blocking, normalisation, low-pass Bessel filter, resampling, quadrature imbalance compensation, chromatic dispersion compensation, non-linear compensation, timing recovery, adaptive equalisation, down-sampling, frequency offset estimation, and carrier phase estimation is used at the receiving end to compensate for signal impairments during propagation. Maximum transmission distances of 7200, 1050, 560, and 360 km have been achieved at an acceptable bit error rate for QPSK, 16-QAM, 32-QAM, and 64-QAM, respectively. The grey-coded systems outperformed the differential-coded systems regarding optical signal-to-noise ratio requirement, receiver sensitivity, and transmission distance.

References

    1. 1)
      • 37. Pfau, T., Hoffmann, S., Noé, R.: ‘Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations’, J. Lightwave Technol., 2009, 27, (8), pp. 989999.
    2. 2)
      • 36. Viterbi, A.M.: ‘Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission’, IEEE Trans. Inf. Theory, 1983, 29, (4), pp. 543551.
    3. 3)
      • 26. Wai, P.K.A., Menyuk, C.R., Lee, Y.C., et al: ‘Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers’, Opt. Lett., 1986, 11, (7), p. 464.
    4. 4)
      • 33. Godard, D.N.: ‘Self-recovering equalization and carrier tracking in two-dimensional data communication systems’, IEEE Trans. Commun., 1980, 28, pp. 18671875.
    5. 5)
      • 14. Singh, J., Kumar, N.: ‘Performance analysis of different modulation format on free space optical communication system’, Optik, 2013, 124, (20), pp. 46514654.
    6. 6)
      • 5. Li, X., Zhao, S., Zhu, Z., et al: ‘An optical frequency shifter based on high-order optical single-sideband modulation and polarization multiplexing’, J. Lightwave Technol., 2016, 34, (22), pp. 50945100.
    7. 7)
      • 12. Ma, J., Zhan, Y.: ‘Full-duplex hybrid PON/RoF link with the 10 Gbit/s 16-QAM signal for alternative wired and 60 GHz millimeter-wave wireless accesses’, Photonics Netw. Commun., 2014, 27, (1), pp. 1627.
    8. 8)
      • 13. Mehra, M., Sadawarti, H., Singh, M.L.: ‘Performance analysis of coherent optical communication system for higher order dual polarization modulation formats’, Optik, 2017, 135, pp. 174179.
    9. 9)
      • 11. Li, Y., Zhang, Y., Huang, Y., et al: ‘A novel 64-QAM optical transmitter driven by binary signals’, Optik, 2015, 126, (23), pp. 44014404.
    10. 10)
      • 32. Oerder, M., Meyr, H.: ‘Digital filter and square timing recovery’, IEEE Trans. Commun., 1988, 36, (5), pp. 605612.
    11. 11)
      • 16. Otuya, D.O., Member, S., Kasai, K., et al: ‘Nyquist orthogonal TDM transmission with’, J. Lightwave Technol., 2016, 34, (2), pp. 768775.
    12. 12)
      • 22. Agrawal, G.P.: ‘in Kelley, P.L., Kaminow, I.P., Agrawal, G.P (Eds): Nonlinear fiber optics’ (Academic Press, 225 Wyman street, Waltham, Ma 02451, USA, 2001, 3rd edn.), pp. 27128.
    13. 13)
      • 35. Morelli, M., Mengali, U.: ‘Feedforward frequency estimation for PSK: a tutorial review’, Eur. Trans. Telecommun., 1998, 9, (2), pp. 103116.
    14. 14)
      • 7. Isoe, G.M., Wassin, S., Rotich Kipnoo, E.K., et al: ‘VCSEL-based differential modulation technique for high-speed gigabit passive optical networks’, J. Mod. Opt., 2018, 340, pp. 15. Available at https://www.tandfonline.com/doi/full/10.1080/09500340.2018.1535672.
    15. 15)
      • 27. Cohen, L.: ‘Comparison of single-mode fiber dispersion measurement techniques’, J. Lightwave Technol., 1985, 3, (5), pp. 958966.
    16. 16)
      • 6. Chen, Y.: ‘Analysis of the dual-parallel Mach–Zehnder modulator-based equivalent phase modulation’, J. Mod. Opt., 2018, 65, (18), pp. 20792085. Available at https://www.tandfonline.com/doi/full/10.1080/09500340.2018.1496287.
    17. 17)
      • 23. Marcuse, D., Menyuk, C.R., Wai, P.K.A.: ‘Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence’, J. Lightwave Technol., 1997, 15, (9), pp. 17351746.
    18. 18)
      • 30. Savory, S.J.: ‘Digital filters for coherent optical receivers’, Opt. Express, 2008, 16, (2), p. 804.
    19. 19)
      • 2. Cole, C.: ‘Beyond 100G client optics’, IEEE Commun. Mag., 2012, 50, (2), pp. 5866.
    20. 20)
      • 8. Dong, Z., Chien, H.C., Yu, J., et al: ‘Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks’, IEEE Photonics Technol. Lett., 2016, 28, (4), pp. 469472.
    21. 21)
      • 18. Zhou, X., Zhong, K., Gao, Y., et al: ‘Modulation-format-independent blind phase search algorithm for coherent optical square M-QAM systems’, Opt. Express, 2014, 22, (20), pp. 2404424054.
    22. 22)
      • 25. Golovchenko, E.A., Pilipetskii, A.N.: ‘Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers’, J. Opt. Soc. Am. B, 1994, 11, (1), p. 92.
    23. 23)
      • 24. Nithyanandan, K., Vasantha Jayakantha Raja, R., Porsezian, K.: ‘Theoretical investigation of modulational instability in semiconductor doped dispersion decreasing fiber and its cutting edge over the existing fiber systems’, J. Opt. Soc. Am. B, 2013, 30, (1), p. 178.
    24. 24)
      • 3. Fu, Y., Bi, M., Feng, D., et al: ‘Spectral efficiency improved 2D-PAM8 trellis coded modulation for short reach optical system’, IEEE Photonics J., 2017, 9, (4), pp. 210.
    25. 25)
      • 4. Ahmad, S., Zafrullah, M.: ‘40 Gb/s 4-QAM OFDM radio over fiber system at 60 GHz employing coherent detection’, J. Mod. Opt., 2015, 62, (4), pp. 296301.
    26. 26)
      • 9. Winzer, P.J.: ‘High-spectral-efficiency optical modulation formats’, J. Lightwave Technol., 2012, 30, (24), pp. 38243835.
    27. 27)
      • 21. Seimetz, M.: ‘transmitter design, Receiver configuration’, ‘High-order modulation for optical fiber transmission’ vol. 152 (10587 Berlin, Germany, 2009).
    28. 28)
      • 10. Agalliu, R., Lucki, M.: ‘System performance and limits of optical modulation formats in dense wavelength division multiplexing systems’, Elektron. Elektrotech., 2016, 22, (2), pp. 123129.
    29. 29)
      • 17. Rosa, E.S., Silva, F.A., Ribeiro, V.B., et al: ‘112 Gb/s DP-QPSK coherent optical transmission over 3000 km using an complete set of digital signal processing algorithms’. Int. Microwave and Optoelectronics Conf. Proc., Natal, Brazil, 2011, pp. 2529.
    30. 30)
      • 15. Zhang, R., Ma, J., Wang, Z., et al: ‘Full-duplex fiber-wireless link with 40 Gbit/s 16-QAM signals for alternative wired and wireless accesses based on homodyne/heterodyne coherent detection’, Optical Fiber Technol., 2014, 20, (3), pp. 261267.
    31. 31)
      • 34. Sethares, W., Rey, G.A., Johnson, C.R.: ‘Approaches to blind equalization of signals with multiple modulus’. Int. Conf. on Acoustics, Speech, and Signal Processing, Glasgow, UK, 1989, pp. 972975.
    32. 32)
      • 19. Li, X., Luo, M., Qiu, Y., et al: ‘Independent component analysis based digital signal processing in coherent optical fiber communication systems’, Opt. Commun., 2018, 409, pp. 1322.
    33. 33)
      • 31. Du, L.B., Lowery, A.J.: ‘Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems’, Opt. Express, 2010, 18, (16), p. 17075.
    34. 34)
      • 1. Winzer, P.J., Essiambre, R.J.: ‘Advanced optical modulation formats’, Proc. IEEE, 2006, 94, (5), pp. 952985.
    35. 35)
      • 29. Fatadin, I., Savory, S.J., Ives, D.: ‘Compensation of quadrature imbalance in an optical QPSK coherent receiver’, IEEE Photonics Technol. Lett., 2008, 20, (20), pp. 17331735.
    36. 36)
      • 20. Zhu, Y., Jiang, M., Chen, Z., et al: ‘Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz’, J. Lightwave Technol., 2018, 36, (14), pp. 29122919.
    37. 37)
      • 28. Kakati, D., Arya, S.C.: ‘A full-duplex optical fiber/wireless coherent communication system with digital signal processing at the receiver’, Optik, 2018, 171, pp. 190199.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0205
Loading

Related content

content/journals/10.1049/iet-com.2019.0205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address