access icon free Energy-efficient BBU pool virtualisation for C-RAN with quality of service guarantees

Cloud radio access network (C-RAN) has been introduced as a promising network paradigm for improving the spectral and energy efficiency of next-generation mobile systems. In C-RAN, the computation resources of the centralised baseband units (BBUs) can be virtualised and dynamically shared among cells for energy-efficient BBU pool utilisation. In this study, a BBU virtualisation scheme is proposed to minimise the total power consumption in the BBU pool subject to constraints on users’ quality of service in terms of real-time requirements, individual fronthaul capacity and BBU capacity. As the BBU processing time and transmission delay for each user data can be compromised to meet the user's real-time requirements while minimising the BBU power consumption, a priori user association phase is proposed and formulated as an optimisation problem to maximise the users’ transmission rate, and hence minimising their transmission delay. Then, the BBU processing allocation phase is formulated as a bin-packing problem to minimise the overall power consumption in the BBU pool. Since this problem is combinatorial, a heuristic algorithm is proposed based on best-fit-decreasing algorithm to solve it. Extensive simulations show that the proposed scheme outperforms the comparable ones in terms of power consumption with reduction up to 33%.

Inspec keywords: bin packing; cloud computing; minimisation; telecommunication power management; telecommunication computing; quality of service; virtualisation; computational complexity; mobile computing; radio access networks; resource allocation

Other keywords: energy-efficient BBU pool utilisation; BBU processing time; computation resources; BBU processing allocation phase; BBU capacity; next-generation mobile systems; energy-efficient BBU pool virtualisation; total power consumption; a priori user association phase; centralised baseband units; real-time requirements; transmission delay; cloud radio access network; energy efficiency; network paradigm; bin-packing problem; spectral efficiency; best-fit-decreasing algorithm; user data; BBU power consumption; BBU virtualisation scheme; BBU pool subject; C-RAN; individual fronthaul capacity; service guarantees

Subjects: Internet software; Radio access systems; Mobile radio systems; Telecommunication systems (energy utilisation); Communications computing; Optimisation techniques; Optimisation techniques

References

    1. 1)
      • 3. Esmat, H.H., Elmesalawy, M.M., Abdelhakam, M.M., et al: ‘Joint radio resource and power allocation using Nash bargaining game for H-CRAN with non-ideal fronthaul links’, Trans. Emerg. Telecommun. Technol., 2018, 29, (9), p. e3449.
    2. 2)
      • 11. Wang, X., Thota, S., Tornatore, M., et al: ‘Energy-efficient virtual base station formation in optical-access-enabled cloud-RAN’, IEEE J. Sel. Areas Commun., 2016, 34, (5), pp. 11301139.
    3. 3)
      • 12. Yao, J., Ansari, N.: ‘QoS-aware joint BBU–RRH mapping and user association in cloud-RANs’, IEEE Trans. Green Commun. Netw., 2018, 2, (4), pp. 881889.
    4. 4)
      • 17. You, D., Doan, T.V., Torre, R., et al: ‘Fog computing as an enabler for immersive media: service scenarios and research opportunities’, IEEE Access, 2019, 7, pp. 6579765810.
    5. 5)
      • 4. Dhif-Allah, O., Dahrouj, H., Al-Naffouri, T.Y., et al: ‘Distributed robust power minimisation for the downlink of multi-cloud radio access networks’, IEEE Trans. Green Commun. Netw., 2018, 2, (2), pp. 327335.
    6. 6)
      • 32. Wang, K., Yang, K., Magurawalage, C.S.: ‘Joint energy minimization and resource allocation in C-RAN with mobile cloud’, IEEE Trans. Cloud Comput., 2018, 6, (3), pp. 760770.
    7. 7)
      • 8. Shi, Y., Zhang, J., Chen, W., et al: ‘Enhanced group sparse beamforming for green cloud-RAN: a random matrix approach’, IEEE Trans. Wirel. Commun., 2018, 17, (4), pp. 25112524.
    8. 8)
      • 31. 3GPP: ‘Further advancements for E-UTRA physical layer aspects’. TR 36.814 v9.0.0, 3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network, March 2010.
    9. 9)
      • 26. Bertsekas, D.P.: ‘Convex optimisation theory’ (Athena Scientific, Belmont, MA, USA, 2009).
    10. 10)
      • 29. Johnson, D.S.: ‘Fast algorithms for bin-packing’, J. Comput. Syst. Sci., 1974, 8, (3), pp. 272314.
    11. 11)
      • 24. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, UK, 2004).
    12. 12)
      • 22. Liu, C., Li, M., Hanly, S.V., et al: ‘Joint downlink user association and interference management in two-tier HetNets with dynamic resource partitioning’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 13651378.
    13. 13)
      • 21. Tang, J., Tay, W.P., Wen, Y.: ‘Dynamic request redirection and elastic service scaling in cloud-centric media networks’, IEEE Trans. Multimed., 2014, 16, (5), pp. 14341445.
    14. 14)
      • 14. Chen, Y.S., Chiang, W.L., Shih, M.C.: ‘A dynamic BBU–RRH mapping scheme using borrow-and-lend approach in cloud radio access networks’, IEEE Syst. J., 2018, 12, (2), pp. 16321643.
    15. 15)
      • 2. Shen, Q., Ma, Z., Wang, S.: ‘Deploying C-RAN in cellular radio networks: an efficient way to meet future traffic demands’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 78877891.
    16. 16)
      • 28. He, P., Zhao, L., Zhou, S., et al: ‘Water-filling: a geometric approach and its application to solve generalized radio resource allocation problems’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36373647.
    17. 17)
      • 27. Boyd, S., Xiao, L., Mutapcic, A.: ‘Subgradient methods’ (Stanford University, Stanford, CA, USA, 2003).
    18. 18)
      • 20. Bertsekas, D., Gallager, R.: ‘Data networks’ (Prentice-Hall, NJ, USA, 1992, 2nd edn.).
    19. 19)
      • 9. Wang, K., Zhou, W., Mao, S.: ‘On joint BBU/RRH resource allocation in heterogeneous cloud-RANs’, IEEE Internet Things J., 2017, 4, (3), pp. 749759.
    20. 20)
      • 10. Sahu, B.J.R., Dash, S., Saxena, N., et al: ‘Energy-efficient BBU allocation for green C-RAN’, IEEE Commun. Lett., 2017, 21, (7), pp. 16371640.
    21. 21)
      • 13. Sigwele, T., Alam, A.S., Pillai, P., et al: ‘Evaluating energy-efficient cloud radio access networks for 5G’. 2015 IEEE Int. Conf. Data Science and Data Intensive Systems, Sydney, NSW, December 2015, pp. 362367.
    22. 22)
      • 30. Abdelhakam, M.M., Elmesalawy, M.M., Mahmoud, K.R., et al: ‘A cooperation strategy based on bargaining game for fair user-centric clustering in cloud-RAN’, IEEE Commun. Lett., 2018, 22, (7), pp. 14541457.
    23. 23)
      • 25. Low, S.H., Lapsley, D.E.: ‘Optimisation flow control. I. Basic algorithm and convergence’, IEEE/ACM Trans. Netw., 1999, 7, (6), pp. 861874.
    24. 24)
      • 5. Zeng, D., Zhang, J., Gu, L., et al: ‘Energy-efficient coordinated multipoint scheduling in green cloud radio access network’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 99229930.
    25. 25)
      • 18. Wu, D., Negi, R.: ‘Effective capacity: a wireless link model for support of quality of service’, IEEE Trans. Wirel. Commun., 2003, 2, (4), pp. 630643.
    26. 26)
      • 6. Yan, D., Wang, R., Liu, E., et al: ‘ADMM-based robust beamforming design for downlink cloud radio access networks’, IEEE Access, 2018, 6, pp. 2791227922.
    27. 27)
      • 15. Sherman, W.R., Craig, A.B.: ‘Understanding virtual reality: inter-face, application, and design’ (Morgan Kaufmann, San Mateo, CA, USA, 2018).
    28. 28)
      • 1. Chen, Y., Zhang, S., Xu, S., et al: ‘Fundamental trade-offs on green wireless networks’, IEEE Commun. Mag., 2011, 49, (6), pp. 3037.
    29. 29)
      • 7. Nguyen, K., Vu, Q., Juntti, M., et al: ‘Energy efficiency maximisation for C-RANs: discrete monotonic optimisation, penalty, and 0-approximation methods’, IEEE Trans. Signal Process., 2018, 66, (17), pp. 44354449.
    30. 30)
      • 23. Trabelsi, N., Chen, C.S., El Azouzi, R., et al: ‘User association and resource allocation optimisation in LTE cellular networks’, IEEE Trans. Netw. Serv. Manage., 2017, 14, (2), pp. 429440.
    31. 31)
      • 16. Elbamby, M.S., Perfecto, C., Bennis, M., et al: ‘Toward low-latency and ultra-reliable virtual reality’, IEEE Netw., 2018, 32, (2), pp. 7884.
    32. 32)
      • 19. Burke, P.J.: ‘The output of a queuing system’, Oper. Res., 1956, 4, (6), pp. 699704.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0187
Loading

Related content

content/journals/10.1049/iet-com.2019.0187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading