© The Institution of Engineering and Technology
In this study, the authors propose a novel threedimensional (3D) nonstationary geometrybased stochastic model (GBSM) and the corresponding deterministic and stochastic simulation models for nonisotropic unmanned aerial vehicle (UAV) multipleinput multipleoutput (MIMO) Ricean fading channels. The proposed GBSM employs a twocylinder model, where the signal is a superposition of lineofsight component, singlebounced rays around the UAV, singlebounced rays around the ground station (GS), singlebounced rays on the ground, and doublebounced rays. The nonstationarity is reflected on the timevarying angles of departure and angles of arrival. Since the authors consider the GS to be mobile, the proposed 3D GBSM is general and suitable for UAVaided vehicular communication scenarios. Based on the proposed model, some important channel statistical properties are derived and thoroughly investigated, including the spacetime correlation function, Doppler power spectral density, envelope level crossing rate and average fade duration. Moreover, the proposed model has the ability to investigate the influence of some unique UAVrelated parameters on channel characteristics and nonstationarity. Finally, excellent agreement is achieved between the reference model and simulation models, demonstrating the feasibility of simulation models as well as the correctness of theoretical derivations.
References


1)

1. Matolak, D.W.: ‘Unmanned aerial vehicles: communications challenges and future aerial networking’. Proc. IEEE Int. Conf. on Computing, Networking and Communications (ICNC), Garden Grove, CA, 2015, pp. 567–572.

2)

2. Pabst, R., et al: ‘Relaybased deployment concepts for wireless and mobile broadband radio’, IEEE Commun. Mag., 2004, 42, (9), pp. 80–89.

3)

3. Jiang, H., Zhang, Z., Wu, L., et al: ‘Threedimensional geometrybased UAVMIMO channel modeling for A2G communication environments’, IEEE Commun. Lett., 2018, 22, (7), pp. 1438–1441.

4)

4. Willink, T.J., Squires, C.C., Colman, G.W.K., et al: ‘Measurement and characterization of lowaltitude airtoground MIMO channels’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 2637–2648.

5)

5. Guay, R., Drolet, G., Bray, J.R.: ‘Measurement and modelling of the dynamic radar crosssection of an unmanned aerial vehicle’, IET Radar Sonar Navig., 2017, 11, (7), pp. 1155–1160.

6)

6. Sun, R., Matolak, D.W., Rayess, W.: ‘Airground channel characterization for unmanned aircraft systemspart IV: airframe shadowing’, IEEE Trans. Veh. Technol., 2017, 66, (9), pp. 7643–7652.

7)

7. Shi, Z., Xia, P., Gao, Z., et al: ‘Modeling of wireless channel between UAV and vessel using the FDTD method’. Proc. WiCom, Beijing, China, September 2014, pp. 100–104.

8)

8. Matolak, D.W., Sun, R.: ‘Airground channel characterization for unmanned aircraft systems part III: the suburban and nearurban environments’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 6607–6618.

9)

9. Daniel, K., Putzke, M., Dusza, B., et al: ‘Three dimensional channel characterization for low altitude aerial vehicles’. Proc. Int. Symp. on Wireless Communication Systems (ISWCS), York, United Kingdom, September 2010, pp. 756–760.

10)

10. Simunek, M., Fontán, F.P., Pechač, P.: ‘The uav low elevation propagation channel in urban areas: statistical analysis and timeseries generator’, IEEE Trans. Antennas Propag., 2013, 61, (7), pp. 3850–3858.

11)

11. Yin, X., Cheng, X.: ‘Propagation channel characterization, parameter estimation, and modeling for wireless communications’ (WileyIEEE Press, Hoboken, NJ, 2014).

12)

12. Zeng, L., Cheng, X., Wang, C., et al: ‘A 3D geometrybased stochastic channel model for UAVMIMO channels’. Proc. IEEE IEEE Wireless Communications and Networking Conf. (WCNC), San Francisco, CA, 2017, pp. 1–5.

13)

13. Zeng, L., Cheng, X., Wang, C., et al: ‘Second order statistics of nonisotropic UAV ricean fading channels’. Proc. IEEE Vehicular Technology Conf. (VTC Fall), Toronto, ON, 2017, pp. 1–5.

14)

14. Jin, K., Cheng, X., Ge, X., et al: ‘Three dimensional modeling and spacetime correlation for UAV channels’. Proc. IEEE Vehicular Technology Conf. (VTC Spring), Sydney, NSW, 2017, pp. 1–5.

15)

15. Li, Y., Cheng, X.: ‘New deterministic and statistical simulation models for nonisotropic UAVMIMO channels’. Proc. Int. Conf. on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2017, pp. 1–6.

16)

16. Wang, C., Ghazal, A., Ai, B., et al: ‘Channel measurements and models for highspeed train communication systems: a survey’, IEEE Commun. Surv. Tutor., 2016, 18, (2), pp. 974–987.

17)

17. Cai, X., GonzalezPlaza, A., Alonso, D., et al: ‘Low altitude UAV propagation channel modelling’. Proc. European Conf. on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 1443–1447.

18)

18. Yuan, Y., Wang, C., He, Y., et al: ‘3D wideband nonstationary geometrybased stochastic models for nonisotropic MIMO vehicletovehicle channels’, IEEE Trans. Wirel. Commun., 2015, 14, (12), pp. 6883–6895.

19)

19. Ghazal, A., Yuan, Y., Wang, C., et al: ‘A nonstationary IMTadvanced MIMO channel model for highmobility wireless communication systems’, IEEE Trans. Wirel. Commun., 2017, 16, (4), pp. 2057–2068.

20)

20. Cheng, X., Li, Y.: ‘A 3D geometrybased stochastic model for UAVMIMO wideband nonstationary channels’, IEEE Internet Things J., 2019, 6, (2), pp. 1654–1662.

21)

21. Li, Y., Cheng, X.: ‘A 3D geometrybased stochastic model for UAV aided vehicular MIMO communication channels’, IET Commun., 2019, submitted.

22)

22. Abdi, A., Barger, J.A., Kaveh, M.: ‘A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station’, IEEE Trans. Veh. Technol., 2002, 51, (3), pp. 425–434.

23)

23. Cheng, X., Yao, Q., Wang, C., et al: ‘An improved parameter computation method for a MIMO V2V Rayleigh fading channel simulator under nonisotropic scattering environments’, IEEE Commun. Lett., 2013, 17, (2), pp. 265–268.

24)

24. Cheng, X., Wang, C., Ai, B., et al: ‘Envelope level crossing rate and average fade duration of nonisotropic vehicletovehicle ricean fading channels’, IEEE Trans. Intell. Syst., 2014, 15, (1), pp. 62–72.

25)

25. GutiérrezDìazdeLeòn, C.A., Pätzold, M.: ‘Sumofsinusoidsbased simulation of flat fading wireless propagation channels under nonisotropic scattering conditions’. Proc. IEEE GLOBECOM, Washington, DC, 2007, pp. 3842–3846.

26)

26. Zheng, Y.R.: ‘A nonisotropic model for mobiletomobile fading channel simulations’. Proc. IEEE Military Communications Conf. (MILCOM), Washington, DC, 2006, pp. 1–7.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2019.0139
Related content
content/journals/10.1049/ietcom.2019.0139
pub_keyword,iet_inspecKeyword,pub_concept
6
6