Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Energy-efficiency-based CMAC protocol with hybrid time–power splitting relaying for wireless ad-hoc networks

This work presents a new cross-layer cooperative medium access control (CMAC) protocol with hybrid radio frequency (RF) energy-harvesting (EH) capability to enhance the energy efficiency and network lifetime of energy-constrained wireless ad-hoc networks. The proposed protocol employs an adaptive transmission process and integrates the hybrid time–power splitting wireless EH technique at the relay node. The relay node can also assist using its own power (traditional cooperation) provided its battery level is sufficiently adequate and there is no need for RF-EH. The best transmission mode among direct transmission, cooperative transmission and TPSR cooperation is selected based on power allocation. Two techniques namely the outage probability quality-of-service requirement and transmit power optimisation are considered. In addition, the distributed relay selection process is proposed to select the best helper based on location, residual energy and EH information that can significantly enhance the energy efficiency and network lifetime of the wireless network. The results indicate that the proposed protocol can extend the lifetime and improves the energy efficiency of the network.

References

    1. 1)
      • 16. Yang, D., Zhu, C., Xiao, I., et al: ‘An energy-efficient scheme for multirelay cooperative networks with energy harvesting’, Mob. Inf. Syst., 2016, 2016, pp. 111.
    2. 2)
      • 13. Wu, S., Liu, K., Zhang, W., et al: ‘A distributed cooperative MAC protocol with relay collision avoidance for wireless ad-hoc networks’. Proc. IEEE Int. Conf. on Inform. Net. (ICOIN), Chiang Mai, Thailand, 2018, pp. 325330.
    3. 3)
      • 2. Engmann, F., Katsriku, F.A., Abdulai, J.D., et al: ‘Prolonging the lifetime of wireless sensor networks: a review of current techniques’, Wirel. Commun. Mob. Comput., 2018, 2018, pp. 123.
    4. 4)
      • 25. Ojo, F.K., Salleh, M.F.M.: ‘Secrecy analysis of SWIFT-enabled cooperative networks with DF HPTSR protocol’, IEEE. Access., 2018, 6, pp. 6598666006.
    5. 5)
      • 17. Rabie, K.M., Adebisi, B., Alouini, M.S.: ‘Half-duplex and full-duplex AF and DF relaying with energy-harvesting in log-normal fading’, IEEE Trans. Green Commun. Netw., 2017, 1, (4), pp. 468480.
    6. 6)
      • 22. Ojo, F.K., Salleh, M.F.M.: ‘Throughput analysis of a hybridized power- time splitting based relaying protocol for wireless information and power transfer in cooperative networks’, IEEE. Access., 2018, 6, pp. 2413724147.
    7. 7)
      • 5. Akande, D.O., Salleh, M.F.M., OjoF, K.: ‘MAC protocol for cooperative networks, design challenges, and implementations: a survey’, Telecommun. Syst., 2018, 69, (1), pp. 95111.
    8. 8)
      • 26. Sami, M., Noordin, N.K., Khabazian, M.: ‘A TDMA-based cooperative MAC protocol for cognitive networks with opportunistic energy harvesting’, IEEE Commun. Lett., 2016, 20, (4), pp. 808811.
    9. 9)
      • 24. Do, D.T.: ‘Time power switching based relaying protocol in energy harvesting mobile node: optimal throughput analysis’, Mob. Inf. Syst., 2015, 2015, pp. 19.
    10. 10)
      • 3. Jiang, R., Xiong, K., Zhang, Y., et al: ‘Outage analysis and optimization of SWIPT in network-coded two-way relay networks’, Mob. Inf. Syst., 2017, 2017, pp. 116.
    11. 11)
      • 23. Singh, V., Ochiai, H.: ‘An efficient time switching protocol with adaptive power splitting for wireless energy harvesting relay networks’. Proc. IEEE 85th Veh. Tech. Conf. (VTC Spring), Sydney, Australia, 2017, pp. 15.
    12. 12)
      • 10. Wang, X., Li, J.: ‘Improving the network lifetime of MANETs through cooperative MAC protocol design’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (4), pp. 10101020.
    13. 13)
      • 11. Zhao, Y., Hu, J., Diao, Y., et al: ‘Modelling and performance analysis of wireless LAN enabled by RF energy transfer’, IEEE Trans. Commun., 2018, 66, (7), pp. 57565772.
    14. 14)
      • 19. Nasir, A.A., Zhou, X., Durrani, S., et al: ‘Relaying protocols for wireless energy harvesting and information processing’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36223636.
    15. 15)
      • 18. Tutuncuoglu, K., Yener, A.: ‘Optimum transmission policies for battery limited energy harvesting nodes’, IEEE Trans. Wirel. Commun., 2012, 11, (3), pp. 11801189.
    16. 16)
      • 15. Do, N.T., Bao, V.N.Q., An, B.: ‘A relay selection protocol for wireless energy harvesting relay networks’. Proc. Int. Conf. on Advanced Tech. for Commun., Ho Chi Minh City, Vietnam, 2015, pp. 243247.
    17. 17)
      • 27. Benjillali, M., Alouini, M.S.: ‘Partner cooperation with decode-and-forward: closed-form outage analysis and comparison’, IEEE Trans. Veh. Tech., 2013, 62, (1), pp. 127139.
    18. 18)
      • 28. Boyd, S., Vandenberghe, L: ‘Convex optimization’ (Cambridge University Press, UK, 2004), pp. 243247.
    19. 19)
      • 14. Akande, D.O., Salleh, M.F.M.: ‘A network lifetime extension-aware cooperative MAC protocol for MANETs with optimized power control’, IEEE. Access., 2019, 7, pp. 1854618557.
    20. 20)
      • 6. Rappaport, T.: ‘Wireless communications: principles and practices’ (Prentice-Hall, Upper Saddle River, New Jersey, 2002, 2nd edn.), pp. 171194.
    21. 21)
      • 9. Sami, M., Noordin, N.K., Hashim, F., et al: ‘An energy-aware cross-layer cooperative MAC protocol for wireless ad-hoc networks’, J. Netw. Comput. Appl., 2015, 58, pp. 227248.
    22. 22)
      • 1. Peron, G., Brante, G., Souza, R.D., et al: ‘Physical and MAC cross-layer analysis of energy-efficient cooperative MIMO networks’, IEEE Trans. Commun., 2018, 66, (5), pp. 19401954.
    23. 23)
      • 21. Mahama, S., Asiedu, D.K.P., Lee, K.: ‘Simultaneous wireless information and power transfer for cooperative relay networks with battery’, IEEE. Access., 2017, 5, pp. 1317113178.
    24. 24)
      • 12. Zhang, W., Wei, X., Han, G., et al: ‘An energy-efficient ring cross-layer optimization algorithm for wireless sensor networks’, IEEE Access., 2018, 6, pp. 1658816598.
    25. 25)
      • 7. Shamna, H. R., Lillykutty, J.: ‘An energy and throughput efficient distributed cooperative MAC protocol for multihop wireless networks’, Comput. Netw., 2017, 126, pp. 1530.
    26. 26)
      • 20. Ha, T., Kim, J., Chung, J.M.: ‘HE-MAC: harvest-then-transmit based modified EDCF MAC protocol for wireless powered sensor networks’, IEEE Trans. Wirel. Commun., 2018, 17, (1), pp. 316.
    27. 27)
      • 4. Ahmed, G., Gharavi, H.: ‘Cooperative vehicular networks: a survey’, IEEE Trans. Inttel. Transp. Sys., 2018, 19, (3), pp. 9961014.
    28. 28)
      • 8. Liu, P., Tao, Z., Narayanan, S., et al: ‘CoopMAC: a cooperative MAC for wireless LANs’, IEEE J. Sel. Areas Commun., 2007, 25, (2), pp. 340353.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0123
Loading

Related content

content/journals/10.1049/iet-com.2019.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address