Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Energy-efficiency fog computing resource allocation in cyber physical internet of things systems

Cyber physical internet of things systems (CPIoTs), taking advantages of cyber physical systems, have been considered as a promising technology to provide better interaction and interoperability among various machines. However, the development of CPIoTs suffers severely from big data. In this context, fog computing is proposed to handle the big data bottleneck of CPIoTs. In this study, the authors focus on the joint optimisation of the communication resources and computation resources in fog computing-based CPIoTs to maximise the overall system energy efficiency, in which multiple fog nodes and end users are taken into consideration. Moreover, since the channel estimation error will become serious with the expanding scale, the imperfect channel state information is considered in this study. The formulated optimisation problem is a mixed integer non-linear problem which is indeed non-deterministic polynomial hard, hence a probability distribution method is proposed to reformulate the problem into a non-probability form, and the resource allocation algorithm based on Dinkelbach algorithm and Lagrange duality approach is adopted to tackle the problem efficiently. The simulation results confirm the effectiveness of the proposed scheme, especially when the scales are enormous.

References

    1. 1)
      • 1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al: ‘Internet of things: a survey on enabling technologies, protocols and applications’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 23472376.
    2. 2)
      • 2. Singh, J., Pasquier, T., Bacon, J.M., et al: ‘Twenty security considerations for cloud-supported internet of things’, IEEE Internet Things J., 2017, 3, (3), pp. 269284.
    3. 3)
      • 9. Zhou, Z., Hu, J., Liu, Q., et al: ‘Fog computing-based cyber-physical machine tool system’, IEEE Access, 2018, 6, pp. 4458044590.
    4. 4)
      • 23. Cox, D.R., Reid, N.: ‘Approximations to non-central distributions’, Can. J. Stat., 1987, 15, (2), pp. 105114.
    5. 5)
      • 4. Hou, X., Li, Y., Chen, M., et al: ‘Vehicular fog computing: a viewpoint of vehicles as the infrastructures’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 38603873.
    6. 6)
      • 7. Wei, Y., Yu, R.F., Song, M., et al: ‘Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning’, IEEE Internet Things J., 2019, 6, (2), pp. 20612073.
    7. 7)
      • 19. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, 2004).
    8. 8)
      • 5. Peng, M., Yan, S., Zhang, K., et al: ‘Fog computing based radio access networks: issues and challenges’, IEEE Netw., 2015, 30, (4), pp. 4653.
    9. 9)
      • 16. Gu, Y., Chang, Z., Pan, M., et al: ‘Joint radio and computational resource allocation in‘fog computing’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 74757484.
    10. 10)
      • 20. Dinkelbach, W.: ‘On nonlinear fractional programming’, Manage. Sci., 1967, 13, (7), pp. 492498.
    11. 11)
      • 18. Liu, Y., Yu, F.R., Li, X., et al: ‘Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access’, IEEE Trans. Veh. Technol., 2018, 67, (12), pp. 1213712151.
    12. 12)
      • 8. Zhou, Y., Yu, R.F., Chen, J., et al: ‘Robust energy-efficient resource allocation for ioT-powered cyber-physical-social smart systems with virtualization’, IEEE Internet Things J., 2019, 6, (2), pp. 24132426.
    13. 13)
      • 14. Guan, M., Bai, B., Wang, L., et al: ‘Joint optimization for computation offloading and resource allocation in internet of things’. 2017 IEEE 86th Vehicular Technology Conf. (VTC-Fall), Toronto, Canada, September 2017, pp. 15.
    14. 14)
      • 24. Ng, K.W.D., Lo, S.E., Schober, R., et al: ‘Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas’, IEEE Trans. Wirel. Commun., 2012, 11, (9), pp. 32923304.
    15. 15)
      • 21. Chen, J., Zhou, Y., Kuo, Y., et al: ‘Energy-efficiency resource allocation for cognitive heterogeneous networks with imperfect channel state information’, IET Commun., 2016, 10, (11), pp. 13121319.
    16. 16)
      • 10. Al-Jaroodi, J., Mohamed, N.: ‘PsCPS: a distributed platform for cloud and fog integrated smart cyber-physical systems’, IEEE Access, 2018, 6, pp. 4143241449.
    17. 17)
      • 3. Jalali, F., Hinton, K., Ayre, R., et al: ‘Fog computing may help to save energy in cloud computing’, IEEE J. Sel. Areas Commun., 2016, 34, (5), pp. 17281739.
    18. 18)
      • 15. Yu, Y., Bu, X., Yang, K., et al: ‘Green large-scale fog computing resource allocation using joint benders decomposition, Dinkelbach algorithm, ADMM, and branch-and-bound’, IEEE Internet Things J., doi: 10.1109/JIOT.2018.2875587.
    19. 19)
      • 17. Du, J., Zhao, L., Feng, J., et al: ‘Computation offloading and resource allocation in mixed fog/cloud computing systems with min–max fairness guarantee’, IEEE Trans. Commun., 2018, 66, (4), pp. 15941608.
    20. 20)
      • 12. Lin, C., Yang, J.: ‘Cost-efficient deployment of fog computing systems at logistics centers in industry 4.0’, IEEE Trans. Ind. Inf., 2018, 14, (10), pp. 46034611.
    21. 21)
      • 6. Lin, J., Yu, W., Zhang, N., et al: ‘A survey on internet of things: architecture, enabling technologies, security and privacy, and applications’, IEEE Internet Things J., 2017, 4, (5), pp. 11251142.
    22. 22)
      • 11. Gu, L., Zeng, D., Guo, S., et al: ‘Cost efficient resource management in fog computing supported medical cyber-physical system’, IEEE Trans. Emerg. Top. Comput., 2017, 5, (1), pp. 108119.
    23. 23)
      • 13. Li, S., Ni, Q., Sun, Y., et al: ‘Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era’, IEEE Trans. Ind. Inf., 2018, 14, (6), pp. 26182628.
    24. 24)
      • 22. Saki, H., Shikh-Bahaei, M.: ‘Cross-layer resource allocation for video streaming over OFDMA cognitive radio networks’, IEEE Trans. Multimed., 2015, 17, (3), pp. 333345.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0121
Loading

Related content

content/journals/10.1049/iet-com.2019.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address