access icon free Security-reliability tradeoff for multi-terminal multi-mode coexisting systems in the presence of multiple eavesdroppers

In this study, the authors explore a wireless network consisting of multiple smart terminals relying on multi-mode in the presence of an eavesdropper, where the eavesdropper may be deployed to wiretap the wireless communications deliberately. In general, a smart terminal can be switched between the licensed modes (e.g. LTE) and the unlicensed modes (e.g. WiFi) according to user's demands (e.g. costs). The designed tradeoff is that the demands can be met by switching, but the security of wireless transmissions may be deteriorated, as the wireless communications can be overheard by the eavesdropper. The authors propose a transmission mode aware smart terminal scheduling (TM-STS) scheme to improve the security of wireless transmissions of a smart terminal. Moreover, they analyse the security-reliability tradeoff (SRT) of the TM-STS scheme. They also present the SRT of the conventional round-robin aided smart terminal scheduling (Rr-STS) scheme. Numerical results show that the TM-STS scheme outperforms the Rr-STS scheme in terms of its SRT, and reveal that increasing the number of smart terminals not only can upgrade the SRT of the TM-STS scheme, but also can be a major influence on the probability of mode switching between a licensed mode and an unlicensed mode of the TM-STS scheme.

Inspec keywords: channel coding; Long Term Evolution; MIMO communication; radio networks; scheduling; probability; telecommunication network reliability; telecommunication security; wireless LAN; mobile radio

Other keywords: multiterminal multimode coexisting systems; wireless network; security-reliability tradeoff; designed tradeoff; transmission mode aware smart terminal scheduling scheme; multiple smart terminals; mode switching; eavesdropper; wireless transmissions; wireless communications; SRT; TM-STS scheme; multiple eavesdroppers; Rr-STS scheme; licensed mode; round-robin aided smart terminal scheduling scheme; unlicensed mode

Subjects: Radio links and equipment; Other topics in statistics; Codes; Mobile radio systems; Reliability; Computer communications

References

    1. 1)
      • 16. He, B., Ni, Q., Chen, J., et al: ‘User-pair selection in multiuser cooperative networks with an untrusted relay’, IEEE Trans. Veh. Technol., 2019, 68, (1), pp. 869882.
    2. 2)
      • 6. Ogiela, L., Ogiela, M.: ‘Insider threats and cryptographic techniques in secure information management’, IEEE Syst. J., 2017, 11, (2), pp. 405414.
    3. 3)
      • 25. Zou, Y.: ‘Intelligent interference exploitation for heterogeneous cellular networks against eavesdropping’, IEEE J. Sel. Areas Commun., 2018, 36, (7), pp. 14531464.
    4. 4)
      • 9. Wyner, A.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    5. 5)
      • 13. Zheng, L., Sang, L., Liu, J., et al: ‘Maximising the degrees of freedom of the physical-layer secured relay networks with artificial jamming’, IET Commun., 2018, 12, (6), pp. 665671.
    6. 6)
      • 30. Trillingsgaard, K.F., Yang, W., Durisi, G., et al: ‘Common-message broadcast channels with feedback in the nonasymptotic regime: full feedback’, IEEE Trans. Inf. Theory, 2018, 64, (12), pp. 77197741.
    7. 7)
      • 23. Zou, Y., Yao, Y., Zheng, B.: ‘An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks’, IEEE Trans. Signal Process., 2010, 58, (10), pp. 54385445.
    8. 8)
      • 20. Hoang, T., Duong, T., Suraweera, H., et al: ‘Cooperative beamforming and user selection for improving the security of relay-aided systems’, IEEE Trans. Commun., 2015, 63, (12), pp. 50395051.
    9. 9)
      • 7. Du, J., Zhao, L., Feng, J., et al: ‘Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee’, IEEE Trans. Commun., 2018, 66, (4), pp. 15941608.
    10. 10)
      • 19. Wang, H., Zhang, X., Yang, Q., et al: ‘Secure users oriented downlink MISO NOMA’, IEEE J. Sel. Topics Signal Process., 2019, 13, (3), pp. 671684.
    11. 11)
      • 17. Abbas, M.A., Song, H., Hong, J.: ‘Opportunistic scheduling for average secrecy rate enhancement in fading downlink channel with potential eavesdroppers’, IEEE Trans. Inf. Forensics Sec., 2019, 14, (4), pp. 969980.
    12. 12)
      • 18. Ding, X., Zou, Y., Zhang, G., et al: ‘The security-reliability tradeoff of multiuser scheduling-aided energy harvesting cognitive radio networks’, IEEE Trans. Commun., 2019, 67, (6), pp. 38903904.
    13. 13)
      • 11. Wang, B., Mu, P., Li, Z.: ‘Artificial-noise-aided beamforming design in the MISOME wiretap channel under the secrecy outage probability constraint’, IEEE Trans. Wirel. Commun., 2017, 16, (11), pp. 72077220.
    14. 14)
      • 29. Dai, B., Ma, Z., Luo, Y.: ‘Finite state Markov wiretap channel with delayed feedback’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (3), pp. 746760.
    15. 15)
      • 24. Shannon, C.: ‘A mathematical theory of communication’, Bell Syst. Tech. J., 1948, 27, pp. 379423.
    16. 16)
      • 26. Tang, X., Liu, R., Spasojevic, P., et al: ‘On the throughput of secure hybrid-ARQ protocols for Gaussian block-fading channels’, IEEE Trans. Inf. Theory, 2009, 55, (4), pp. 15751591.
    17. 17)
      • 8. Jafari Siavoshani, M., Mishra, S., Fragouli, C., et al: ‘Multi-party secret key agreement over state-dependent wireless broadcast channels’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (2), pp. 323337.
    18. 18)
      • 21. Bang, I., Kim, S., Sung, D.: ‘Artificial noise-aided user scheduling for optimal secrecy multiuser diversity’, IEEE Commun. Lett., 2017, 21, (3), pp. 528531.
    19. 19)
      • 3. Choi, W., Lim, H., Sabharwal, A.: ‘Power-controlled medium access control protocol for full-duplex WiFi networks’, IEEE Trans. Wirel. Commun., 2015, 14, (7), pp. 36013613.
    20. 20)
      • 1. Ayyash, M., Elgala, H., Khreishah, A., et al: ‘Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges’, IEEE Commun. Mag., 2016, 54, (2), pp. 6471.
    21. 21)
      • 22. Zou, Y., Champagne, B., Zhu, W., et al: ‘Relay-selection improves the security-reliability trade-off in cognitive radio systems’, IEEE Trans. Commun., 2015, 63, (1), pp. 215228.
    22. 22)
      • 4. Zhang, A., Chen, J., Hu, R., et al: ‘SeDS: secure data sharing strategy for D2D communication in LTE-advanced networks’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 26592672.
    23. 23)
      • 12. Zhao, T., Li, G., Lv, G., et al: ‘Secure communications with untrusted relays: a multi-pair two-way relaying approach’, IET Commun., 2018, 12, (20), pp. 25522560.
    24. 24)
      • 15. Bang, I., Kim, S.M., Sung, D.K.: ‘Artificial noise-aided user scheduling from the perspective of secrecy outage probability’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 78167820.
    25. 25)
      • 28. Kostina, V., Polyanskiy, Y., Verd, S.: ‘Joint source-channel coding with feedback’, IEEE Trans. Inf. Theory, 2017, 63, (6), pp. 35023515.
    26. 26)
      • 10. Leung-Yan-Cheong, S., Hellman, M.: ‘The Gaussian wiretap channel’, IEEE Trans. Inf. Theory, 1978, 24, (4), pp. 451456.
    27. 27)
      • 27. Nguyen, B., Kim, K.: ‘Secrecy outage probability of optimal relay selection for secure anF cooperative networks’, IEEE Commun. Lett., 2015, 19, (12), pp. 20862089.
    28. 28)
      • 2. Gao, Q., Huo, Y., Ma, L., et al: ‘Joint design of jammer selection and beamforming for securing MIMO cooperative cognitive radio networks’, IET Commun., 2017, 11, (8), pp. 12641274.
    29. 29)
      • 5. Choo, K., Gritzalis, S., Park, J.: ‘Cryptographic solutions for industrial internet-of-things: research challenges and opportunities’, IEEE Trans. Ind. Inf., 2018, 14, (8), pp. 35673569.
    30. 30)
      • 14. Ding, X., Song, T., Zou, Y., et al: ‘Security-reliability tradeoff analysis of artificial noise aided two-way opportunistic relay selection’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 39303941.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0117
Loading

Related content

content/journals/10.1049/iet-com.2019.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading