access icon free User fairness for RSS-based positioning in uplink cooperative NOMA

Geolocation of mobile nodes with non-orthogonal multiple access (NOMA) is a crucial process for enabling advanced location-based services (LBSs) in 5G networks. In this study, the authors investigate the theoretical limits of received-signal-strength (RSS)-based positioning for uplink cooperative NOMA under different network conditions with special emphasis on the user fairness feature. In addition, they compare the performance of the RSS-based positioning of cooperative NOMA with that of orthogonal multiple access (OMA). The Cramer-Rao lower bounds are derived in order to show the fundamental limits of position estimation error by taking amplify-and-forward and decode-and-forward relaying into account. The numerical results for both schemes are presented and compared considering the effects of number of relays and user equipments, different relaying on the performance of RSS positioning. The effects of power allocation on the user fairness of cooperative NOMA are also investigated. The results show that the cooperative NOMA outperforms cooperative OMA in terms of positioning. It provides high precision position accuracy and user fairness under different network conditions. Hence, the results suggest that the RSS-based positioning for uplink cooperative NOMA is a promising technique for achieving user fairness and supporting diversified low-cost LBSs in 5G networks.

Inspec keywords: cooperative communication; mobility management (mobile radio); multi-access systems; wireless channels; cellular radio; 5G mobile communication; radio networks; mobile computing; mobile radio

Other keywords: user fairness feature; orthogonal multiple access; advanced location-based services; different network conditions; received-signal-strength-based; RSS-based positioning; nonorthogonal multiple access; RSS positioning; high precision position accuracy; position estimation error; NOMA

Subjects: Mobile, ubiquitous and pervasive computing; Radio links and equipment; Multiple access communication; Other topics in statistics; Mobile radio systems

References

    1. 1)
      • 2. Gezici, S.: ‘A survey on wireless position estimation’. Springer Wireless Personal Communications, Special Issue on Towards Global and Seamless Personal Navigation, October 2007, pp. 263–282.
    2. 2)
      • 40. Qi, Y., Kobayashi, H., Suda, H.: ‘On time-of-arrival positioning in a multipath environment’, IEEE Trans. Veh. Technol., 2006, 55, (5), pp. 15161527.
    3. 3)
      • 30. Dai, L., Wang, B., Yuan, Y., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Commun. Mag., 2015, 53, (9), pp. 7481.
    4. 4)
      • 7. Dammann, A., Raufels, R., Zhang, S.: ‘On prospects of positioning in 5G’. IEEE Int. Conf. on Communication Workshop (ICCW), London, June 2015.
    5. 5)
      • 28. Hoshyar, R., Wathan, F.P., Tafazolli, R.: ‘Novel low-density signature for synchronous CDMA systems over AWGN channel’, IEEE Trans. Signal Process., 2008, 56, (4), pp. 16161626.
    6. 6)
      • 17. Qaraqe, K.A., Hussain, S.I., Celebi, H., et al: ‘An RSS based location estimation technique for cognitive relay networks’. Proc. of the 3rd Int. Workshop on Cognitive Radio and Advanced Spectrum Management (CogART’10), Rome, Italy, 2010.
    7. 7)
      • 33. Ding, Z., Dai, H., Poor, H.V.: ‘Relay selection for cooperative NOMA’, IEEE Wirel. Commun. Lett., 2016, 5, (4), pp. 416419.
    8. 8)
      • 5. Del Peral-Rosado, J.A., Lopez-Salcedo, J.A., Seco-Granados, G., et al: ‘Preliminary analysis of the positioning capabilities of the positioning reference signal of 3GPP LTE’. Proc. 5th European Workshop on GNSS Signals and Signal Processing, Toulouse, France, December 2011.
    9. 9)
      • 43. Gezici, S., Celebi, H., Poor, H.V., et al: ‘Fundamental limits on time delay estimation in dispersed spectrum cognitive radio systems’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 7883.
    10. 10)
      • 13. Ding, Z., Lei, X., Karagiannidis, G.K., et al: ‘A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends’, IEEE J. Sel. Areas Commun., 2017, 35, (10), pp. 21812195.
    11. 11)
      • 37. Al-Imari, M., Xiao, P., Ali Imran, M., et al: ‘Uplink non-orthogonal multiple access for 5G wireless networks’. Proc. Int. Symp. on Wireless Communication Systems (ISWCS2014), Barcelona, Spain, August 2014.
    12. 12)
      • 24. Saito, Y., Kishiyama, Y., Benjebbour, A., et al: ‘Non-orthogonal multiple access (NOMA) for cellular future radio access’. IEEE Vehicular Technology Conf., Dresden, June 2013.
    13. 13)
      • 49. Jiao, R., Dai, L., Zhang, J., et al: ‘On the performance of NOMA-based cooperative relaying systems over Rician fading channels’, IEEE Trans. Veh. Technol., 2017, 66, (12), pp. 1140911413.
    14. 14)
      • 12. Rappaport, T., Sun, S., : ‘Mayzus, R.: , et alMillimeter wave mobile communications for 5G cellular: it will work!’, IEEE Access, 2013, 1, pp. 335349.
    15. 15)
      • 6. Del Peral-Rosado, J.A., Lopez-Salcedo, J.A., Zanier, F., et al: ‘Achievable localization accuracy of the positioning reference signal of 3GPP LTE’. Proc. IEEE Int. Conf. on Localization and GNSS (ICL-GNSS), Nuremberg, Germany, 2012.
    16. 16)
      • 46. Malmström, M.: ‘5G positioning using machine learning’. Master Thesis, Linköping University,, 2018.
    17. 17)
      • 51. Zhang, J., Tao, X., Wu, H., et al: ‘Performance analysis of user pairing in cooperative NOMA networks’, IEEE Access, 2018, 6, pp. 7428874302.
    18. 18)
      • 45. Khan, M.A., Saeed, N., Waheed, A., et al: ‘Location awareness in 5G networks using RSS measurements for public safety applications’, IEEE Access, 2017, 5, pp. 2175321762.
    19. 19)
      • 53. Tsiropoulos, G.I., Yadav, A., Zeng, M., et al: ‘Cooperation in 5G HetNets: advanced spectrum access and D2D assisted communications’, IEEE Wirel. Commun., 2017, 24, (5), pp. 110117.
    20. 20)
      • 36. Do, T.N., De Costa, D.B., Duong, T.Q., et al: ‘Improving the performance of cell-edge users in NOMA systems using cooperative relaying’, IEEE Trans. Commun., 2018, 66, (5), pp. 18831901.
    21. 21)
      • 25. Higuchi, K.: ‘Non-orthogonal multiple access (NOMA) for future radio access’ (Tokyo University of Science, Japan, 2016).
    22. 22)
      • 52. Abdel-Razeq, S., Zhou, S., Bansal, R., et al: ‘Uplink NOMA transmissions in a cooperative relay network based on statistical channel state information’, IET Commun., 2019, 13, (4), pp. 371378.
    23. 23)
      • 22. Liu, Y., Qin, Z., Elkashlan, M., et al: ‘Nonorthogonal multiple access for 5G and beyond’, Proc. IEEE, 2017, 105, (12), pp. 23472381.
    24. 24)
      • 38. Laneman, N.J., Tse, D.N.C., Wornell, G.W.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    25. 25)
      • 18. Xiao, Z., Zhu, L., Gao, Z., et al: ‘User fairness non-orthogonal multiple access (NOMA) for 5G millimeter-wave communications with analog beamforming’. CoRR, November 2018, abs/1811.02908.
    26. 26)
      • 32. Ding, Z., Peng, M., Poor, H.V.: ‘Cooperative non-orthogonal multiple access in 5G systems’, IEEE Commun. Lett., 2015, 19, (8), pp. 14621465.
    27. 27)
      • 11. Andrews, J.G., Buzzi, S., Choi, W.: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    28. 28)
      • 19. Timotheou, S., Krikidis, I.: ‘Fairness for non-orthogonal multiple access in 5G systems’, IEEE Signal Process. Lett., 2015, 22, (10), pp. 16471651.
    29. 29)
      • 4. Sivers, M., Fokin, G.: ‘LTE positioning accuracy performance evaluation’. Proc. Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART),, St. Petersburg, Russia, 26–28 August 2015.
    30. 30)
      • 42. Qi, Y., Kobayashi, H.: ‘Cramer-rao lower bound for geolocation in non-line-of-sight environment’. Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, Florida, USA, 2002, pp. 24732476.
    31. 31)
      • 3. Celebi, H.: ‘Location awareness in cognitive radio networks’. PhD dissertation, University of South Florida, 2008.
    32. 32)
      • 34. Kim, J.B., HoLee, I.: ‘Capacity analysis of cooperative relaying systems using non-orthogonal multiple access’, IEEE Commun. Lett., 2015, 19, (11), pp. 19491952.
    33. 33)
      • 23. Aldababsa, M., Toka, M., Gokceli, S., et al: ‘A tutorial on nonorthogonal multiple access for 5G and beyond’, Wirel. Commun. Mob. Comput., 2018, 2018, Article ID 9713450.
    34. 34)
      • 15. 3GPP TR 38.913: ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Scenarios and Requirements for Next Generation Access Technologies; (Release 14)’, March 2016.
    35. 35)
      • 47. Zhang, X., Razavi, S.M., Gunnarsson, F., et al: ‘Beam-based vehicular position estimation in 5G radio access’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Barcelona, Spain, 15–18 April 2018.
    36. 36)
      • 55. Abbasi, O., Ebrahimi, A., Mokari, N.: ‘NOMA inspired cooperative relaying system using an AF relay’, IEEE Wirel. Commun. Lett., 2019, 8, (1), pp. 261264.
    37. 37)
      • 14. Roth, J.D., Tummala, M., McEachen, J.C.: ‘Eficient system geolocation architecture in next-generation cellular networks’, IEEE Syst. J., 2017, 12, (4), pp. 34143425.
    38. 38)
      • 56. Qi, Y., Kobayashi, H.: ‘On relation among time delay and signal strength based geolocation methods’. Proc. IEEE GLOBECOM, San Francisco, California, USA, 2003.
    39. 39)
      • 29. Ding, Z., Liu, Y., Choi, J., et al: ‘Application of non-orthogonal multiple access in LTE and 5G networks’, IEEE Commun. Mag., 2017, 55, (2), pp. 185191.
    40. 40)
      • 10. Ranta-aho, K.: ‘Performance of 3GPP Rel-9 LTE positioning methods’. 2nd Invitational Workshop on Opportunistic RF Localization for Next Generation Wireless Devices, Worcester Polytechnic Institute, Worcester, MA, USA, 13–14 June 2010.
    41. 41)
      • 9. Patwari, N., Ash, J.N., Kyperountas, S., et al: ‘Locating the nodes: cooperative localization in wireless sensor networks’, IEEE Signal Process. Mag., 2005, 22, (4), pp. 5469.
    42. 42)
      • 41. Qi, Y., Kobayashi, H., Suda, H.: ‘Analysis of wireless geolocation in a non-line-of-sight environment’, IEEE Trans. Veh. Technol., 2006, 5, (3), pp. 672681.
    43. 43)
      • 1. Kupper, A.: ‘Location-based services: fundamentals and operation’ (John Wiley and Sons, UK, 2005).
    44. 44)
      • 50. Bilim, M., Kapucu, N.: ‘On the analysis of achievable rate for NOMA networks with cooperative users over κ-μ shadowed fading channels’, Int. J. Commun. Syst., 2019, 32, (12), p. e4001.
    45. 45)
      • 54. Feng, M., Jiang, T., Chen, D., et al: ‘Cooperative small cell networks: high capacity for hotspots with interference mitigation’, IEEE Wirel. Commun., 2014, 21, (6), pp. 108116.
    46. 46)
      • 44. Celik, G., Celebi, H.: ‘Theoretical limits for time delay based location estimation in cooperative relay networks’, Wirel. Pers. Commun., 2014, 75, pp. 24292448.
    47. 47)
      • 27. Nikopour, H., Baligh, H.: ‘Sparse code multiple access’. Proc. of the IEEE 24th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC'13), London, UK, September 2013, pp. 332336.
    48. 48)
      • 26. Ding, Z.: ‘Non-orthogonal multiple access (NOMA): evolution towards 5G networks’ (School of Computing and Communication, Lancester University, UK, 2016).
    49. 49)
      • 31. Higuchi, K., Kishiyama, Y.: ‘Non-orthogonal access with successive interference cancellation for future radio access’. Proc. of Asia Pacific Wireless Communications Symp. (APWS 2012), Kyoto, Japan, 2012.
    50. 50)
      • 8. Feng, C., Au, W.S.A., Valaee, S., et al: ‘Received-signal-strength-based indoor positioning using compressive sensing’, IEEE Trans. Mob. Comput., 2012, 11, (12), pp. 19831993.
    51. 51)
      • 39. Wang, T., Cano, A., Giannakis, G.B., et al: ‘High-performance cooperative demodulation with decode-and-forward relays’, IEEE Trans. Commun., 2007, 55, (7), pp. 14271438.
    52. 52)
      • 16. Celebi, H., Abdallah, M., Hussain, S.I., et al: ‘Time of arrival based location estimation for cooperative relay networks’. Proceeding of the IEEE 21st Int. Symp. on Personal Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2010, pp. 872877.
    53. 53)
      • 35. Liu, Y., Pan, G., Zhang, H., et al: ‘Hybrid decode-and-forward & amplify-and-forward relaying with non-orthogonal multiple access’, IEEE Access, 2016, 4, pp. 49124921.
    54. 54)
      • 20. Xing, H., Liu, Y., Nallanathan, A., et al: ‘Sum-rate maximization guaranteeing user fairness for NOMA in fading channels’. 2018 IEEE Wireless Communications and Networking Conf. (WCNC), Barcelona, Spain, 15–18 April 2018.
    55. 55)
      • 48. Talvitie, J., Levanen, T., Koivisto, M., et al: ‘Positioning and location-based beamforming for high speed trains in 5GNR networks’. Proc. IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018.
    56. 56)
      • 21. Roth, J.D., Tummala, M., McEachen, J.C.: ‘Efficient system geolocation architecture in next-generation cellular networks’, IEEE Syst. J., 2017, 12, (4), pp. 34143425.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0102
Loading

Related content

content/journals/10.1049/iet-com.2019.0102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading