access icon free Power allocation scheme for downlink and uplink NOMA networks

Resource allocation problem is a key issue in multi-carrier non-orthogonal multiple access (NOMA) networks. Maximum access problem and power allocation problem are two important problems in resource allocation problem. In this study, two algorithms are proposed to solve the two problems for multi-carrier NOMA networks, namely mixed integer programming algorithm (MIPA) and dynamic power allocation algorithm (DPAA). In order to solve the maximum access problem, a MIPA is proposed in uplink multi-carrier NOMA networks. For the power allocation problem, a DPAA is proposed in downlink multi-carrier NOMA networks. Simulation results show that MIPA can increase the number of supported users compared to other schemes, DPAA can improve user data rate by increasing mean channel quality indicator and make power allocation more reasonable. According to DPAA, the gains of weighted sum-rate utility per subcarrier can be improved with the increase in the number of subcarriers. Simulation results also show that the proposed scheme is superior to reservation channel technique in terms of the probability of call dropping and probability of call blocking.

Inspec keywords: resource allocation; interference suppression; radiofrequency interference; multi-access systems; integer programming; cellular radio; channel allocation; radio links; probability

Other keywords: DPAA; power allocation problem; MIPA; uplink multicarrier NOMA networks; maximum access problem; downlink multicarrier NOMA networks; dynamic power allocation algorithm; power allocation scheme; multicarrier nonorthogonal multiple access networks; resource allocation problem

Subjects: Radio links and equipment; Optimisation techniques; Electromagnetic compatibility and interference; Mobile radio systems; Multiple access communication

References

    1. 1)
      • 1. Liu, Y., Derakhshani, M., Lambotharan, S.: ‘Outage analysis and power allocation in uplink non-orthogonal multiple access systems’, IEEE Commun. Lett., 2018, 22, (2), pp. 336339.
    2. 2)
      • 30. Alsamhi, S.H., Rajput, N.S.: ‘An efficient channel reservation technique for improved QoS for mobile communication deployment using high altitude platform’, Wirel. Pers. Commun., 2016, 91, pp. 10951108.
    3. 3)
      • 14. Chen, Q. T., Kang, D.: ‘Joint power and admission control based on channel distribution information: a novel two-timescale approach’, IEEE Signal Process. Lett., 2017, 24, (2), pp. 196200.
    4. 4)
      • 19. Balasubramanya, N.M., Gupta, A., Sellathurai, M.: ‘Combining code-domain and power-domain NOMA for supporting higher number of users’. 2018 IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 16.
    5. 5)
      • 13. Abbes, Y., Najeh, S., Besbes, H.: ‘The impact of the superposition coding concept on admission control strategy in OFDMA-based network’, China Commun., 2018, 15, (6), pp. 6883.
    6. 6)
      • 15. Shi, Y.M., Mishra, B., Chen, W.: ‘Topological interference management with user admission control via riemannian optimization’, IEEE Trans. Wirel. Commun., 2017, 17, (11), pp. 73627375.
    7. 7)
      • 22. Ali, M.S., Hossain, E., Arafat, A.D., et al: ‘Downlink power allocation for CoMP-NOMA in multi-cell networks’, IEEE Trans. Commun., 2018, 66, (9), pp. 39823998.
    8. 8)
      • 21. Liu, X., Wang, X.B., Liu, Y.A.: ‘Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G’, China Commun., 2017, 14, (1), pp. 5060.
    9. 9)
      • 29. Bai, W.L., Yao, T.: ‘Resource allocation improvement for non-orthogonal multiple access’. 2018 IEEE 9th Int. Conf. on Software Engineering and Service Science (ICSESS), Beijing, China, 2018, pp. 445448.
    10. 10)
      • 27. Fang, F., Zhang, H.J., Cheng, J.L., et al: ‘Victor C. M. Leung, joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI’, IEEE J. Sel. Areas Commun., 2017, 35, (2), pp. 28742885.
    11. 11)
      • 17. Zeng, M., Yadav, A., Dobre, O.A., et al: ‘Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster’, IEEE J. Sel. Areas Commun., 2017, 35, (10), pp. 24132424.
    12. 12)
      • 11. Zhang, Z., Sun, H., Hu, R.Q.: ‘Downlink and uplink non-orthogonal multiple access in a dense wireless network’, IEEE J. Sel. Areas Commun., 2017, 35, (12), pp. 27712784.
    13. 13)
      • 10. Zhang, N., Wang, J., Kang, G., et al: ‘Uplink non-orthogonal multiple access in 5G systems’, IEEE Commun. Lett., 2016, 20, (3), pp. 458461.
    14. 14)
      • 25. Li, X.A., Li, C., Jin, Y.: ‘Dynamic resource allocation for transmit power minimization in OFDM-based NOMA systems’, IEEE Commun. Lett., 2016, 20, (12), pp. 25582561.
    15. 15)
      • 8. Sun, Y.: ‘Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems’, IEEE Trans. Commun., 2017, 65, (3), pp. 10771091.
    16. 16)
      • 12. Shashika Manosha, K.B., Satya, K.J., Marian, C.: ‘Admission control algorithms for QoS-constrained multicell MISO downlink systems’, IEEE Trans. Wirel. Commun., 2018, 17, (3), pp. 19821999.
    17. 17)
      • 24. Wang, Q., Zhao, F.: ‘Joint spectrum and power allocation for NOMA enhanced relaying networks’, IEEE. Access., 2019, 7, pp. 2700827016.
    18. 18)
      • 18. Ni, J.Q., Zuo, J., Han, S.F., et al: ‘On the number of admissible users in NOMA’, IEEE Wirel. Commun. Lett., 2019, 8, (3), pp. 793796.
    19. 19)
      • 3. Lei, L.: ‘Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation’, IEEE Trans. Wireless Commun., 2016, 15, (12), pp. 85808594.
    20. 20)
      • 28. Choi, J.: ‘Power allocation for max-sum rate and max-min rate proportional fairness in NOMA’, IEEE Commun. Lett., 2016, 20, (10), pp. 20552058.
    21. 21)
      • 9. Zhai, D., Zhang, R., Cai, L., et al: ‘Energy-efficient user scheduling and power allocation for NOMA based wireless networks with massive IoT devices’, IEEE Internet Things J., 2018, 5, (3), pp. 18571868.
    22. 22)
      • 26. Fu, Y.R., Salaün, L., Sung, C.W., et al: ‘Subcarrier and power allocation for the downlink of multicarrier NOMA systems’, IEEE Trans. Veh. Technol., 2018, 67, (12), pp. 1183311847.
    23. 23)
      • 23. Liu, F., Petrova, M.: ‘Dynamic power allocation for downlink multi-carrier NOMA systems’, IEEE Commun. Lett., 2018, 22, (9), pp. 19301933.
    24. 24)
      • 2. Wei, Z.: ‘Optimal resource allocation for power-efficient MCNOMA with imperfect channel state information’, IEEE Trans. Commun., 2017, 65, (9), pp. 39443961.
    25. 25)
      • 4. Lei, L., Yuan, D., Vrbrand, P.: ‘On power minimization for non-orthogonal multiple access (NOMA)’, IEEE Commun. Lett., 2016, 20, (12), pp. 24582461.
    26. 26)
      • 5. Choi, J.: ‘On the power allocation for MIMO-NOMA systems with layered transmissions’, IEEE Trans. Wireless Commun., 2016, 15, (5), pp. 32263237.
    27. 27)
      • 7. Zhu, J.: ‘On optimal power allocation for downlink non-orthogonal multiple access systems’, IEEE J. Sel. Area. Commun., 2017, 35, (12), pp. 27442757.
    28. 28)
      • 16. Amin, S.H., Mehana, A.H., Soliman, S.S., et al: ‘Power allocation for maximum MIMO-NOMA system user-rate’. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 16.
    29. 29)
      • 6. Zhai, D., Du, J.: ‘Spectrum efficient resource management for multicarrier based NOMA networks: a graph-based method’, IEEE Wireless Commun. Lett., 2018, 7, (3), pp. 388391.
    30. 30)
      • 20. Shin, W., Vaezi, M., Lee, J.H., et al: ‘On the number of users served in MIMO-NOMA cellular networks’. 2016 Int. Symp. on Wireless Communication Systems (ISWCS), Poznan, Poland, 2016, pp. 638642.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0066
Loading

Related content

content/journals/10.1049/iet-com.2019.0066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading