access icon free E2-SR: a novel energy-efficient secure routing scheme to protect MANET-IoT

Integration of mobile ad hoc networks (MANETs) and internet of things (IoT) becomes an emerging paradigm to enable opportunistic communication in IoT. However, the lack of infrastructure in MANET increases involvement of adversaries in IoT environment. Thus security provisioning against severe adversaries is still challenging in MANET-IoT. In this paper, we propose an energy efficient secure routing (E2-SR) scheme to ensure data security and integrity in MANET-IoT. We adapt Certificate based authentication in Hash Chain based Certificate Authentication (HCCA) scheme. Cluster formation is involved with secure verification of IoT devices by elliptic curve group law formulations. For cluster formation, secure dual head clustering with elliptic curve verification (SDHC-EC) algorithm is proposed. Secure routing is enabled by a new Worst Case Particle Swarm Optimization (WC-PSO) algorithm. The WC-PSO algorithm is supported by dual state markov chain model (DS-MCM) for security enhancement. Data security is ensured with data integrity using novel dual XOR-Rivest Cipher6 Encryption with Fuzzy Evaluation (DXOR-RC6 with FE) algorithm. The proposed MANET-IoT network is modeled and tested in ns-3.26 environment. The evaluation shows that E2-SR achieves better results in packet delivery ratio, throughput, residual energy, and routing overhead.

Inspec keywords: energy conservation; telecommunication security; data integrity; particle swarm optimisation; Markov processes; telecommunication power management; public key cryptography; Internet of Things; cryptography; telecommunication network routing; mobile ad hoc networks

Other keywords: mobile ad hoc networks; DXOR-RC6 with FE algorithm; opportunistic communication; IoT environment; data security; sensitivity analysis; WC-PSO algorithm; security enhancement; trusted routing scheme; attack pattern analysis; Internet of Things; ns-3.26 environment; MANET-IoT network; HCCA scheme; packet delivery ratio; worst case particle swarm optimisation; attack detection ability; elliptic curve verification algorithm; routing overhead; hash chain based certificate authentication; IoT devices; pattern discovery method; data integrity; residual energy; fuzzy evaluation; energy-efficient secure routing scheme; secure verification; dual XOR-Rivest Cipher6 Encryption; Secure Dual Head Clustering; E2-SR; dual state Markov chain model; TRS-PD method

Subjects: Cryptography; Mobile radio systems; Optimisation techniques; Communication network design, planning and routing; Markov processes; Telecommunication systems (energy utilisation); Probability theory, stochastic processes, and statistics

References

    1. 1)
      • 25. Devi, V.S., Hegde, N.P.: ‘Multipath security aware routing protocol for MANET based on trust enhanced cluster mechanism for lossless multimedia data transfer’, Wirel. Pers. Commun., 2018, 100, (3), pp. 923940.
    2. 2)
      • 31. Alshehri, M.D., Hussain, F.K.: ‘A fuzzy security protocol for trust management in the internet of things (fuzzy-IoT)’, Computing, 2018, 101, (7), pp. 791818.
    3. 3)
      • 17. Muthusenthil, B., Murugavalli, S.: ‘Privacy preservation and protection for cluster based geographic routing protocol in MANET’, Wirel. Netw., 2017, 23, (1), pp. 7987.
    4. 4)
      • 32. Oda, H., Kulla, E., Ozaki, R., et al: ‘Design of an adhoc testbed for IoT and WSAN applications using Raspberry Pi’. Advances on Broadband Wireless Computing, Communications, and Applications, Asan, Korea, 2016, pp. 535546.
    5. 5)
      • 22. Xia, H., Li, Z., Zheng, Y., et al: ‘A novel light-weight subjective trust inference framework in MANETs’, IEEE Trans. Sustain. Comput., 2018.
    6. 6)
      • 12. Rullo, A., Serra, E., Bertino, E., et al: ‘Shortfall-based optimal placement of security resources for mobile IoT scenarios’. European Symp. on Research in Computer Security, Oslo, Norway, Springer, 2017, pp. 419436.
    7. 7)
      • 13. Kecskemeti, G., Casale, G., Jha, D.N., et al: ‘Modelling and simulation challenges in internet of things’, IEEE Cloud Comput., 2017, 4, (1), pp. 6269.
    8. 8)
      • 5. Nia, A.M., Jha, N.K.: ‘A comprehensive study of security of internet-of-things’, IEEE Trans. Emerg. Top. Comput., 2017, 5, (4), pp. 586602.
    9. 9)
      • 30. Sakthivel, T., Chandrasekaran, R.M.: ‘A dummy packet-based hybrid security framework for mitigating routing misbehavior in multi-hop wireless networks’, Wirel. Pers. Commun., 2018, 101, (3), pp. 15811618.
    10. 10)
      • 24. Vamsi, P.R., Kant, K.: ‘Generalized trust model for cooperative routing in MANETs’, Wirel. Pers. Commun., 2017, 97, (3), pp. 43854412.
    11. 11)
      • 29. Schweitzer, N., Stulman, A., Shabtai, A., et al: ‘Contradiction based gray-hole attack minimization for ad-hoc networks’, IEEE Trans. Mob. Comput., 2017, 16, (8), pp. 21742183.
    12. 12)
      • 8. Balasubramani, S., Rani, S.K., Suja Rajeswari, K.: ‘Review on security attacks and mechanism in VANET and MANET’, ‘Artificial Intelligence and Evolutionary Computations in Engineering Systems’ (Springer, New Delhi, 2016).
    13. 13)
      • 36. Jhaveri, R.H., Patel, N.M., Zhong, Y., et al: ‘Sensitivity analysis of an attack-pattern discovery based trusted routing scheme for mobile ad-hoc networks in industrial IoT’, IEEE Access, 2018, 6, pp. 2008520103.
    14. 14)
      • 9. Liu, G., Yan, Z., Pedrycz, W.: ‘Data collection for attack detection and security measurement in mobile adhoc networks: a survey’, J. Netw. Comput. Appl., 2018, 105, pp. 105122.
    15. 15)
      • 4. Yang, Y., Wu, L., Yin, G., et al: ‘A survey on security and privacy issues in Internet-of-Things’, IEEE Internet Things J., 2017, 4, (5), pp. 12501258.
    16. 16)
      • 18. Sethuraman, P., Kannan, N.: ‘Refined trust energy-ad hoc on demand distance vector (ReTE-AODV) routing algorithm for secured routing in MANET’, Wirel. Netw., 2017, 23, (7), pp. 22272237.
    17. 17)
      • 16. Brindha, V., Karthikeyan, T., Manimegalai, P.: ‘Fuzzy enhanced secure multicast routing for improving authentication in MANET’, Cluster Comput., 2018, pp. 19.
    18. 18)
      • 6. Leite, J.R.E., Ursini, E.L., Martins, P.S.: ‘Simulation of AdHoc networks including clustering and mobility’. Int. Conf. on Ad-hoc networks and Wireless Networks, Messina, Italy, 2017.
    19. 19)
      • 21. Jamaesha, S.S., Bhavani, S.: ‘A secure and efficient cluster based location aware routing protocol in MANET’, Cluster Comput., 2018, pp. 18.
    20. 20)
      • 28. Sridevi, N., Nagarajan, V.: ‘A curve based cryptography for wireless security in MANET’, Cluster Comput., 2018, pp. 19.
    21. 21)
      • 27. Cai, R.J., Li, X.J., Chong, P.H.J.: ‘An evolutionary self-cooperative trust scheme against routing disruptions in MANETs’, IEEE Trans. Mob. Comput., 2019, 18, (1), pp. 4255.
    22. 22)
      • 7. Kumar, V.V., Ramamoorthy, S.: ‘Secure Adhoc on-demand multipath distance vector routing in MANET’. Int. Conf. on Computing and Communications Systems, Shillong, India, 2018.
    23. 23)
      • 37. Mukherjee, S., Chattopadhyay, M., Chattopadhyay, S., et al: ‘EAER-AODV: enhanced trust model based on average encounter rate for secure routing in MANET’, Advanced Computing and Systems for Security (Springer, Singapore, 2018), pp. 135151.
    24. 24)
      • 26. Muthurajkumar, S., Ganapathy, S., Vijayalakshmi, M., et al: ‘An intelligent secured and energy efficient routing algorithm for MANETs’, Wirel. Pers. Commun., 2017, 96, (2), pp. 17531769.
    25. 25)
      • 11. Ye, Q., Zhuang, W.: ‘Distributed and adaptive medium access control for internet-of-things-enabled mobile networks’, IEEE Internet Things J., 2017, 4, (2), pp. 446460.
    26. 26)
      • 34. Anil, G.N.: ‘FAN: framework for authentication of nodes in mobile adhoc environment of internet-of-things’. Computer Science On-line Conf., Vsetin, Czech Republic, 2018.
    27. 27)
      • 15. Malhotra, S., Trivedi, M.C.: ‘Authentication, KDC, and key pre-distribution techniques-based model for securing AODV routing protocol in MANET’, in Panigrahi, B.K., Trivedi, M.C., Mishra, K.K., et al: ‘Smart innovations in communication and computational sciences’ (Springer, Singapore, 2018), pp. 175786.
    28. 28)
      • 10. Mukherjee, S., Biswas, G.P.: ‘Networking for IoT and applications using existing communication technology’, Egypt. Inform. J., 2018, 19, (2), pp. 107127.
    29. 29)
      • 2. Ray, P.P.: ‘A survey on Internet of Things architectures’, J. King Saud Univ.-Comput. Inf. Sci., 2018, 30, pp. 291319.
    30. 30)
      • 23. Samreen, S., Meerja, A.J.: ‘Improved recommendation filtering component resilient to trust distortion attacks in a MANET’. Int. Conf. on Intelligent Information Technology, Chennai, India, 2017, pp. 8192.
    31. 31)
      • 1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al: ‘Internet of things: a survey on enabling technologies, protocols, and applications’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 23472376.
    32. 32)
      • 19. Reshmi, T.R, Murugan, K.: ‘Light weight cryptographic address generation (LW-CGA) using system state entropy gathering for IPv6 based MANETs’, China Commun., 2017, 14, (9), pp. 114126.
    33. 33)
      • 14. Soni, M., Joshi, B.K.: ‘Security assessment of SAODV protocols in mobile ad hoc networks’, in Mishra, D.K., Yang, X.-S., Una, A.: ‘Data science and big data analytics’ (Springer, Singapore, 2018), pp. 347355.
    34. 34)
      • 33. Tai, W.-L., Chang, Y.-F., Li, W.-H.: ‘An IoT notion–based authentication and key agreement scheme ensuring user anonymity for heterogeneous ad hoc wireless sensor networks’, J. Inf. Secur. Appl., 2017, 34, (2), pp. 133141.
    35. 35)
      • 35. Chintalapalli, R.M., Ananthula, V.R.: ‘M-Lion Whale: multi-objective optimization model for secure routing in mobile ad-hoc network’, IET Commun., 2018, 12, (12), pp. 14061415.
    36. 36)
      • 3. Lin, J., Yu, W., Zhang, N., et al: ‘A survey on internet of things: architecture, enabling technologies, security and privacy, and applications’, IEEE Internet Things J., 2017, 4, (5), pp. 11251142.
    37. 37)
      • 20. Swaroop, G.V., Murugaboopathi, G.: ‘Secure and reliable communication scheme for MANET using ECMS cluster head-based certificate revocation’, Cluster Comput., 2017, pp. 113.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0039
Loading

Related content

content/journals/10.1049/iet-com.2019.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading