access icon free Joint relay-and-antenna selection for cooperative non-orthogonal multiple access

Non-orthogonal multiple access (NOMA) has been widely recognised as a promising technology due to its potential to achieve high spectral efficiency and massive connectivity. The authors study a multiple-relay multiple-input and multiple-output cooperative NOMA system. In particular, a joint relay-and-antenna selection (JRAS) scheme with coordinated direct and relay transmission is proposed, which makes it possible to maximise the instantaneous rate of far user with high quality ofservice (QoS) priority while guaranteeing the requirement of near user with low QoS priority. Then, closed-form expressions for outage probability are derived and asymptotic expressions for outage probability in the high signal-to-noise ratio regime are also obtained in order to provide further insights. Analysis results demonstrate that the proposed JRAS scheme significantly enhances the outage performance for cooperative NOMA, and simulation results are provided to verify the accuracy of theoretical analysis.

Inspec keywords: probability; error statistics; MIMO communication; quality of service; cooperative communication; multi-access systems; relay networks (telecommunication); antenna arrays

Other keywords: asymptotic expressions; NOMA; JRAS scheme; relay transmission; high spectral efficiency; high quality of service priority; nonorthogonal multiple access; outage probability; multiple-relay multiple-input and multiple-output cooperative NOMA system; joint relay-and-antenna selection scheme; closed-form expressions; coordinated direct transmission; low QoS priority; high signal-to-noise ratio regime

Subjects: Multiple access communication; Antenna arrays; Other topics in statistics; Radio links and equipment

References

    1. 1)
      • 10. Ding, Z., Yang, Z., Fan, P., et al: ‘On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users’, IEEE Signal Process Lett., 2014, 21, (12), pp. 15011505.
    2. 2)
      • 18. Lui, Y., Pan, G., Zhang, H., et al: ‘On the capacity comparison between MIMO-NOMA and MIMO-OMA’, IEEE Access, 2017, 4, (5), pp. 21232129.
    3. 3)
      • 14. Ding, Z., Dai, H., Poor, H.V.: ‘Relay selection for cooperative NOMA’, IEEE Wirel. Commun. Lett., 2016, 5, (4), pp. 416419.
    4. 4)
      • 8. Al-Imari, M., Xiao, P., Imran, M.A., et al: ‘Uplink non-orthogonal multiple access for 5G wireless networks’. Proc. Int. Symp. on Wireless Communication Systems, Barcelona, Spain, August 2014, pp. 781785.
    5. 5)
      • 21. Zhang, J., Ge, J., Ni, Q.: ‘Joint relay-and-antenna selection in relay-based MIMO-NOMA networks’. Proc. IEEE Veh. Technol. Conf., Porto, Portugal, June 2018, pp. 15.
    6. 6)
      • 26. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (Wiley, New York, 1991, 6th edn.).
    7. 7)
      • 12. Kim, J.-B., Lee, I.-H.: ‘Non-orthogonal multiple access in coordinated direct and relay transmission’, IEEE Commun. Lett., 2015, 19, (11), pp. 20372040.
    8. 8)
      • 23. Yang, Z., Ding, Z., Wu, Y., et al: ‘Novel relay selection strategies for cooperative NOMA’, IEEE Trans. Veh. Technol., 2017, 66, (11), pp. 1011410123.
    9. 9)
      • 20. Men, J., Ge, J., Zhang, C.: ‘A joint relay-and-antenna selection scheme in energy-harvesting MIMO relay networks’, IEEE Wirel. Commun. Lett., 2016, 23, (4), pp. 532536.
    10. 10)
      • 28. Yang, L., Ni, Q., Lv, L., et al: ‘Cooperative non-orthogonal layered multicast multiple access for heterogeneous networks’, IEEE Trans. Commun., 2018, 67, (2), pp. 11481165.
    11. 11)
      • 11. Kim, J.-B., Lee, I.-H.: ‘Capacity analysis of cooperative relaying systems using non-orthogonal multiple access’, IEEE Commun. Lett., 2015, 19, (11), pp. 19491952.
    12. 12)
      • 6. Liu, Y., Elkashlan, M., Ding, Z., et al: ‘Fairness of user clustering in MIMO non-orthogonal multiple access systems’, IEEE Commun. Lett., 2016, 20, (7), pp. 14651468.
    13. 13)
      • 31. Zhang, Y., Ge, J., Serpedin, E.: ‘Performance analysis of nonorthogonal multiple access for downlink networks with antenna selection over Nakagami-m fading channels’, IEEE Trans. Veh. Technol., 2017, 66, (11), pp. 1059010594.
    14. 14)
      • 24. Fazlul Kader, M.d., Shin, S.Y.: ‘Coordinated direct and relay transmission using uplink NOMA’, IEEE Wirel. Commun. Lett., 2018, 7, (3), pp. 400403.
    15. 15)
      • 13. Lv, L., Chen, J., Ni, Q., et al: ‘Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: user scheduling and performance analysis’, IEEE Trans. Commun., 2017, 65, (6), pp. 26412656.
    16. 16)
      • 30. Yan, X., Ge, J., Zhang, Y.: ‘Researches on non-orthogonal multiple access in multiple-antenna 5G relaying networks’. Proc. Int. Conf. Wireless Communication Signal Processing, Nanjing, China, October 2017, pp. 16.
    17. 17)
      • 25. Ju, M., Song, H.-K., Kim, I.-M.: ‘Joint relay-and-antenna selection in multi-antenna relay networks’, IEEE Trans. Commun., 2010, 58, (12), pp. 34173422.
    18. 18)
      • 29. Li, Q., Ge, J., Wang, Q., et al: ‘Joint relay-and-antenna selection in NOMA relaying networks over Nakagami-m fading channels’. Proc. IEEE/CIC Int. Conf. Communication China, Qingdao, China, Qctober 2017, pp. 16.
    19. 19)
      • 16. Liu, X., Wang, X.: ‘Outage probability and capacity analysis of the collaborative NOMA assisted relaying system in 5G’. Proc. IEEE/CIC Int. Conf. Communication China, Chengdu, China, July 2016, pp. 15.
    20. 20)
      • 3. Liu, Y., Qin, Z., Elkashlan, M., et al: ‘Nonorthogonal multiple access for 5G and beyond’, Proc. IEEE, 2017, 105, (12), pp. 23472381.
    21. 21)
      • 32. Ding, J., Cai, J., Yi, C.: ‘An improved coalition game approach for MIMO-NOMA clustering integrating beamforming and power allocation’, IEEE Trans. Veh. Technol., 2019, 68, (2), pp. 16721687.
    22. 22)
      • 1. Ding, Z., Liu, Y., Choi, J., et al: ‘Application of non-orthogonal multiple access in LTE and 5G networks’, IEEE Commun. Mag., 2017, 55, (2), pp. 185191.
    23. 23)
      • 9. Fang, F., Zhang, H., Cheng, J., et al: ‘Energy-efficient resource allocation for downlink non-orthogonal multiple access (NOMA) network’, IEEE Trans. Wirel. Commun., 2016, 64, (9), pp. 37223732.
    24. 24)
      • 19. Sanayei, S., Nosratinia, A.: ‘Antenna selection in MIMO systems’, IEEE Commun. Mag., 2004, 42, (10), pp. 6873.
    25. 25)
      • 2. Wei, Z., Yuan, J., Ng, D.W.K., et al: ‘A survey of downlink non-orthogonal multiple access for 5G wireless communication networks’, ZTE Commun., 2016, 14, (4), pp. 1726.
    26. 26)
      • 7. Lv, L., Chen, J., Ni, Q., et al: ‘Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing’, IEEE Commun. Mag., 2018, 56, (4), pp. 188195.
    27. 27)
      • 4. Wang, P., Xiao, J., Ping, L.: ‘Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems’, IEEE Veh. Technol. Mag., 2006, 1, (3), pp. 411.
    28. 28)
      • 22. Liu, H., Ding, Z., Kim, K.J., et al: ‘Decode-and-forward relaying for cooperative NOMA systems with direct links’, IEEE Trans. Wirel. Commun., 2018, 17, (12), pp. 80778093.
    29. 29)
      • 15. Zhang, Y., Ge, J., Serpedin, E.: ‘Performance analysis of a 5G energy-constrained downlink relaying network with non-orthogonal multiple access’, IEEE Trans. Veh. Technol., 2017, 16, (12), pp. 83338346.
    30. 30)
      • 17. Yu, Y., Chen, H., Li, Y., et al: ‘Antenna selection for MIMO non-orthogonal multiple access systems’, IEEE Trans. Veh. Technol., 2017, 67, (4), pp. 31583171.
    31. 31)
      • 5. Dai, L., Wang, B., Yuan, Y., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Commun. Mag., 2015, 53, (9), pp. 7481.
    32. 32)
      • 27. David, H.A., Nagaraja, H.N.: ‘Order statistics’ (John Wiley, New York, 2003, 3rd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0038
Loading

Related content

content/journals/10.1049/iet-com.2019.0038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading