access icon free Secrecy outage of a multi-relay cooperative communication network with accumulation of harvesting energy at relays

Security of confidential data at the physical layer has been analysed in a network where the source sends the confidential data to the destination via multiple energy harvesting decode and forward relays in the presence of a single eavesdropper (EAV). In this two-hop communication, the first hop is broadcasting hop when the source sends the information signal to relay and other is the relaying hop when a selected relay forwards the information signal as well as transmits a jamming signal to destination and EAV. Each relay has the two batteries; one for accumulating the harvested energy and the other for power supply to relays for relay operation over a number of frames until the accumulated harvested energy becomes sufficient. In the broadcasting hop, relays harvest energy using a power splitting ratio scheme and accumulate the harvested energy in the battery over a number of communication frames. The performance is analysed in the form of secrecy outage probability (SOP) when the relay uses only the harvested energy to forward the signal. A closed-form analytical expression for the SOP is derived. MATLAB-based simulation results match well with the analytical results.

Inspec keywords: telecommunication network reliability; decode and forward communication; telecommunication security; energy harvesting; jamming; probability; relay networks (telecommunication); cooperative communication; telecommunication power management

Other keywords: decode and forward relays; information signal; accumulated harvested energy; Matlab-based simulation; relaying hop; multiple energy harvesting; single eavesdropper; physical layer; broadcasting hop; multirelay cooperative communication network; jamming signal; secrecy outage probability; power splitting ratio scheme; confidential data security; relay operation; two-hop communication

Subjects: Reliability; Energy harvesting; Telecommunication systems (energy utilisation); Data security; Energy harvesting; Electromagnetic compatibility and interference; Radio links and equipment

References

    1. 1)
      • 22. Chen, G., Xiao, P., Kelly, J.R., et al: ‘Full-duplex wireless-powered relay in two way cooperative networks’, IEEE Access, 2017, 5, pp. 15481558.
    2. 2)
      • 18. Dong, L., Yousefi'zadeh, H., Jafarkhani, H.: ‘Cooperative jamming and power allocation for wireless relay networks in presence of eavesdropper’. 2011 IEEE Int. Conf. on Communications (ICC), Kyoto, Japan, 2011, pp. 15.
    3. 3)
      • 5. Parsaeefard, S., Le-Ngoc, T.: ‘Improving wireless secrecy rate via full-duplex relay-assisted protocols’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (10), pp. 20952107.
    4. 4)
      • 16. Vo, V.N., Nguyen, T.G., So-In, C., et al: ‘Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy’, IEEE Access, 2018, 6, pp. 2340623419.
    5. 5)
      • 17. Yao, R., Xu, F., Mekkawy, T., et al: ‘Optimised power allocation to maximise secure rate in energy harvesting relay network’, Electron. Lett., 2016, 52, (22), pp. 18791881.
    6. 6)
      • 10. Jia, S., Zhang, J., Zhao, H., et al: ‘Performance analysis of physical layer security over α-η-κ-μ Fading Channels ', China Commun., 2018, 15, (11), pp. 138148.
    7. 7)
      • 13. Wang, L., Cai, Y., Zou, Y., et al: ‘Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 62596274.
    8. 8)
      • 8. Zheng, B., Wen, M., Wang, C.X., et al: ‘Secure NOMA based two-way relay networks using artificial noise and full duplex’, IEEE J. Sel. Areas Commun., 2018, 36, (7), pp. 14261440.
    9. 9)
      • 20. Chamola, V., Krishnamachari, B., Sikdar, B.: ‘An energy and delay aware downlink power control strategy for solar powered base stations’, IEEE Commun. Lett., 2016, 20, (5), pp. 954957.
    10. 10)
      • 27. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals series, and products’ (Academic Press is an imprint of Elsevier, New york, USA, 2007), 7th Edn..
    11. 11)
      • 12. Bi, Y., Chen, H.: ‘Accumulate and jam: towards secure communication via A wireless-powered full-duplex jammer’, IEEE J. Sel. Top. Signal Process., 2016, 10, (8), pp. 15381550.
    12. 12)
      • 23. Mabrouk, A., El Shafie, A., Tourki, K., et al: ‘AN-aided relay-selection scheme for securing untrusted RF-EH relay systems’, IEEE Trans. Green Commun. Netw., 2017, 1, (4), pp. 481493.
    13. 13)
      • 3. Liu, Y., Li, J., Petropulu, A.P.: ‘Destination assisted cooperative jamming for wireless physical-layer security’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (4), pp. 682694.
    14. 14)
      • 15. He, B., Chen, J., Kuo, Y., et al: ‘Cooperative jamming for energy harvesting multicast networks with an untrusted relay’, IET Commun., 2017, 11, (13), pp. 20582065.
    15. 15)
      • 2. Leung-Yan-Cheong, S.K., Hellman, M.E.: ‘The Gaussian wire-tap channel’, IEEE Trans. Inf. Theory, 1978, 24, (4), pp. 451456.
    16. 16)
      • 11. Tang, L., Li, Q.: ‘Wireless power transfer and cooperative jamming for secrecy throughput maximization’, IEEE Wirel. Commun. Lett., 2016, 5, (5), pp. 556559.
    17. 17)
      • 14. Ding, X., Song, T., Zou, Y., et al: ‘Security-reliability tradeoff for friendly jammer assisted user-pair selection in the face of multiple eavesdroppers’, IEEE Access, 2016, 4, pp. 83868393.
    18. 18)
      • 4. Sun, L., Ren, P., Du, Q., et al: ‘Security-aware relaying scheme for cooperative networks with untrusted relay nodes’, IEEE Commun. Lett., 2015, 19, (3), pp. 463466.
    19. 19)
      • 7. Hu, J., Yang, N., Cai, Y.: ‘Secure downlink transmission in the internet of things: how many antennas are needed?’, IEEE J. Sel. Areas Commun., 2018, 36, (7), pp. 16221634.
    20. 20)
      • 24. Long, M., Chen, Y.: ‘Performance analysis of energy harvesting communications using multiple time slots’, IET Commun., 2019, 13, (3), pp. 289296.
    21. 21)
      • 1. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    22. 22)
      • 21. Wang, C., Li, J., Yang, Y., et al: ‘Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks’, IEEE Trans. Mob. Comput., 2016, 17, (3), pp. 560576.
    23. 23)
      • 26. Liu, X., Ansari, N.: ‘Green relay assisted D2D communications with dual batteries in heterogeneous cellular networks for IoT’, IEEE Internet Things J., 2017, 4, (5), pp. 17071715.
    24. 24)
      • 19. Zheng, Z., Cai, L.X., Zhang, R., et al: ‘RNP-SA: joint relay placement and sub-carrier allocation in wireless communication networks with sustainable energy’, IEEE Trans. Wirel. Commun., 2012, 11, (10), pp. 38183828.
    25. 25)
      • 6. Gong, X., Long, H., Dong, F., et al: ‘Secure communication design for multi-user peer-to-peer wireless relay networks’, IET Commun., 2016, 10, (7), pp. 770777.
    26. 26)
      • 25. Kumar, G.: ‘Cell phone/Tower radiation hazards and solutions’, Newsletter, 2013, 1, pp. 18.
    27. 27)
      • 9. Hui, H., Swindlehurst, A.L., Li, G., et al: ‘Secure relay and jammer selection for physical layer security’, IEEE Signal Process. Lett., 2015, 22, (8), pp. 11471151.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0027
Loading

Related content

content/journals/10.1049/iet-com.2019.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading