Secure analysis of multi-antenna cooperative networks with residual transceiver HIs and CEEs

Secure analysis of multi-antenna cooperative networks with residual transceiver HIs and CEEs

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper investigates the secure performance of multi-antenna decode-and-forward (DF) relaying networks where the Nakagami-m fading channel is taken into account. In practice, the joint impact of residual transceiver hardware impairments (HIs) and channel estimation errors (CEEs) on the outage probability (OP) and intercept probability (IP) are taken into account. Considering HIs and CEEs, an optimal transmit antenna selection scheme is proposed to enhance the secure performance and then a collaborative eavesdropping scheme is proposed. More specifically, they derive exact closed-form expressions for the outage and intercept probabilities. To obtain more useful insights the asymptotic behaviours for the OP are examined in the high signal-to-noise ratio (SNR) regime and the diversity orders are obtained and discussed. Simulation results confirm the analytical derivations and demonstrate that: (i) As the power distribution coefficient increases, OP decreases, while IP increases; (ii) There exist error floors for the OP at high SNRs, which is determined by CEEs; (iii) The secure performance can be improved by increasing the number of source antennas and artificial noise quantisation coefficient, while as the number of eavesdropping increases, the security of the system is reduced; (iv) There is a trade-off between the OP and IP.


    1. 1)
      • 1. Zhang, D., Zhou, Z., Mumtaz, S., et al: ‘One integrated energy efficiency proposal for 5G IoT communications’, IEEE Int. Things J., 2016, 3, (6), pp. 13461354.
    2. 2)
      • 2. Zhang, W., He, W., Wu, D., et al: ‘Joint mode selection, link allocation and power control in underlaying D2D communication’, KSII Trans. Int. Inf. Syst., 2016, 10, (11), pp. 52095228.
    3. 3)
      • 3. Lv, T., Ma, Y., Zeng, J., et al: ‘Millimeter-wave NOMA transmission in cellular M2M communications for internet of things’, IEEE Int. Things J., 2018, 5, (3), pp. 19892000.
    4. 4)
      • 4. Li, X., Li, J., Li, L., et al: ‘Performance analysis of cooperative small cell systems under correlated Rician/Gamma fading channels’, IET Signal Process., 2018, 12, (1), pp. 6473.
    5. 5)
      • 5. Diez, F.P., Touceda, D.S., Sierra Camara, J.M., et al: ‘Toward self-authenticable wearable devices’, IEEE Wirel. Commun., 2015, 22, (1), pp. 3643.
    6. 6)
      • 6. Chen, X., Guo, L., Li, X., et al: ‘Secrecy rate optimization for cooperative cognitive radio networks aided by a wireless energy harvesting jammer’, IEEE Access, 2018, 6, pp. 3412734134.
    7. 7)
      • 7. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    8. 8)
      • 8. Ammari, M., Fortier, P.: ‘Physical layer security of multiple-input-multiple-output systems with transmit beamforming in Rayleigh fading’, IET Commun., 2015, 9, (8), pp. 10961103.
    9. 9)
      • 9. Ahmed, M., Bai, L.: ‘Secrecy capacity of artificial noise aided secure communication in MIMO Rician channels’, IEEE Access, 2018, 6, pp. 79217929.
    10. 10)
      • 10. Lei, H., Gao, C., Guo, Y., et al: ‘On physical layer security over generalized Gamma fading channels’, IEEE Commun. Lett., 2015, 19, (7), pp. 12571260.
    11. 11)
      • 11. Lei, H., Ansari, I.S., Pan, G., et al: ‘Secrecy capacity analysis over αμ fading channels’, IEEE Commun. Lett., 2017, 21, (6), pp. 14451448.
    12. 12)
      • 12. Sun, J., Li, X., Huang, M., et al: ‘Performance analysis of physical layer security over κμ shadowed fading channels’, IET Commun., 2018, 12, (8), pp. 970975.
    13. 13)
      • 13. Liu, K.R.: ‘Cooperative communications and networking’ (Cambridge University Press, New York, USA, 2009).
    14. 14)
      • 14. Deng, C., Zhao, X., Zhang, D., et al: ‘Performance analysis of NOMA-based relaying networks with transceiver hardware impairments’, KSII Trans. Int. Inf. Syst., 2018, 12, pp. 42954316.
    15. 15)
      • 15. Li, X., Li, J., Li, L., et al: ‘Performance analysis of impaired SWIPT NOMA relaying networks over imperfect Weibull channels’, IEEE Syst. J., 2019, 99, (99), pp. 14.
    16. 16)
      • 16. Wu, L., Yang, L., Chen, J., et al: ‘Physical layer security for cooperative relaying over generalized-K fading channels’, IEEE Wirel. Commun. Lett., 2018, 7, (4), pp. 14.
    17. 17)
      • 17. Zou, Y., Wang, X., Shen, W.: ‘Optimal relay selection for physical layer security in cooperative wireless networks’, IEEE J. Sel. Areas Commun., 2013, 31, (10), pp. 20992111.
    18. 18)
      • 18. Son, P.N., Kong, H.Y.: ‘Cooperative communication with energy harvesting relays under physical layer security’, IET Commun., 2015, 9, (17), pp. 21312139.
    19. 19)
      • 19. Asaad, S., Bereyhi, A., Rabiei, A., et al: ‘Optimal transmit antenna selection for massive MIMO wiretap channels’, IEEE J. Sel. Areas Commun., 2018, 36, (4), pp. 817828.
    20. 20)
      • 20. Peters, S., Heath, R..: ‘Nonregenerative MIMO relaying with optimal transmit antenna selection’, IEEE Signal Process. Lett., 2008, 15, pp. 421424.
    21. 21)
      • 21. Lei, H., Zhang, J., Park, K., et al: ‘On secure NOMA systems with transmit antenna selection schemes’, IEEE Access, 2017, 5, pp. 1745017464.
    22. 22)
      • 22. Liu, Y., Qin, Z., Elkashlan, M., et al: ‘Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks’, IEEE Trans. Wirel. Commun., 2017, 16, (3), pp. 16561672.
    23. 23)
      • 23. Lei, H., Zhang, H., Ansari, I., et al: ‘On secrecy outage of relay selection in underlay cognitive radio networks over Nakagami-m fading channels’, IEEE Trans. Cogn. Commun. Netw., 2017, 3, (4), pp. 614627.
    24. 24)
      • 24. Zhang, H., Lei, H., Ansari, I., et al: ‘Security performance analysis of DF cooperative relay networks over Nakagami-m fading channels’, KSII Trans. Int. Inf. Syst., 2017, 11, (5), pp. 24162432.
    25. 25)
      • 25. Tang, X., Yang, W., Cai, Y., et al: ‘Security of full-duplex jamming SWIPT system with multiple non-colluding eavesdroppers’. Int. Conf. on Electronics Information and Emergency Communication (ICEIEC), Macau, 2017, pp. 6669.
    26. 26)
      • 26. Yeoh, P.L., Yang, N., Kim, K.J.: ‘Secrecy outage probability of selective relaying wiretap channels with collaborative eavesdropping’. IEEE Global Commun. Conf. (GLOBECOM), San Diego, 2015, pp. 16.
    27. 27)
      • 27. Schenk, T.: ‘RF imperfections in high-rate wireless systems: impact and digital compensation’ (Springer, Eindhoven, Netherland, 2008).
    28. 28)
      • 28. Li, X., Huang, M., Tian, X., et al: ‘Impact of hardware impairments on large-scale MIMO systems over composite RG fading channels’, AEU-Int. J. Electron. Commun., 2018, 88, pp. 134140.
    29. 29)
      • 29. Bjornson, E., Hoydis, J., Kountouris, M., et al: ‘Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits’, IEEE Trans. Inf. Theory, 2014, 60, (11), pp. 71127139.
    30. 30)
      • 30. Li, X., Li, J., Jin, J., et al: ‘Performance analysis of relaying systems over Nakagami-m fading with transceiver hardware impairments’, Xian Dianzi Keji Daxue J. Xidian Univ., 2017, 25, (3), pp. 135140.
    31. 31)
      • 31. Studer, C., Wenk, M., Burg, A.: ‘MIMO transmission with residual transmit-RF impairments’. Proc. ITG/IEEE Workshop Smart Antennas, Bremen, 2010, pp. 189196.
    32. 32)
      • 32. Li, X., Matthaiou, M., Liu, Y., et al: ‘Multi-pair two-way massive MIMO relaying with hardware impairments over Rician fading channels’. IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018.
    33. 33)
      • 33. Li, X., Li, J., Mathiopoulos, P.T., et al: ‘Joint impact of hardware imperfect CSI on cooperative SWIPT NOMA multi-relaying system’. IEEE CIC Int. Conf. on Communications in China ICCC/CIC, Beijing, 2018.
    34. 34)
      • 34. Li, X., Li, J., Liu, Y., et al: ‘Outage performance of cooperative NOMA networks with hardware impairments’. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018.
    35. 35)
      • 35. Yang, T., Zhang, R., Cheng, X., et al: ‘Secure massive MIMO under imperfect CSI: performance analysis and channel prediction’, IEEE Trans. Inf. Forensics Security, 2019, 14, (6), pp. 16101623.
    36. 36)
      • 36. Yang, T., Zhang, R., Cheng, X., et al: ‘Performance analysis of secure communication in massive MIMO with imperfect channel state information’. IEEE Int. Conf. on Communications (ICC), Kansas, 2018, pp. 16.
    37. 37)
      • 37. Ding, X., Song, T., Zou, Y., et al: ‘Security-reliability tradeoff analysis of artificial noise aided two-way opportunistic relay selection’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 39303941.
    38. 38)
      • 38. Gabry, F., Thobaben, R., Skoglund, M.: ‘Outage performances for amplify-and-forward, decode-and-forward and cooperative jamming strategies for the wiretap channel’. IEEE Wireless Communication Networks Conf., Cancun, Quintana Roo, 2011, pp. 13281333.
    39. 39)
      • 39. Peng, L., Zang, G., Zhou, Q., et al: ‘Security performance analysis for cooperative communication system under Nakagami-m fading channel’. IEEE 17th Int. Conf. Communication Technologies, Chengdu, 2017, pp. 187192.
    40. 40)
      • 40. Bjornson, E., Matthaiou, M., Debbah, M.: ‘A new look at dual-hop relaying: performance limits with hardware impairments’, IEEE Trans. Commun., 2013, 61, (11), pp. 45124525.
    41. 41)
      • 41. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, New York, USA, 2005).
    42. 42)
      • 42. Liu, Y., Ding, Z., Elkashlan, M., et al: ‘Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 938953.
    43. 43)
      • 43. Chen, Z., Chi, Z., Li, Y., et al: ‘Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 424431.

Related content

This is a required field
Please enter a valid email address