Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Secure analysis of multi-antenna cooperative networks with residual transceiver HIs and CEEs

This paper investigates the secure performance of multi-antenna decode-and-forward (DF) relaying networks where the Nakagami-m fading channel is taken into account. In practice, the joint impact of residual transceiver hardware impairments (HIs) and channel estimation errors (CEEs) on the outage probability (OP) and intercept probability (IP) are taken into account. Considering HIs and CEEs, an optimal transmit antenna selection scheme is proposed to enhance the secure performance and then a collaborative eavesdropping scheme is proposed. More specifically, they derive exact closed-form expressions for the outage and intercept probabilities. To obtain more useful insights the asymptotic behaviours for the OP are examined in the high signal-to-noise ratio (SNR) regime and the diversity orders are obtained and discussed. Simulation results confirm the analytical derivations and demonstrate that: (i) As the power distribution coefficient increases, OP decreases, while IP increases; (ii) There exist error floors for the OP at high SNRs, which is determined by CEEs; (iii) The secure performance can be improved by increasing the number of source antennas and artificial noise quantisation coefficient, while as the number of eavesdropping increases, the security of the system is reduced; (iv) There is a trade-off between the OP and IP.

References

    1. 1)
      • 1. Zhang, D., Zhou, Z., Mumtaz, S., et al: ‘One integrated energy efficiency proposal for 5G IoT communications’, IEEE Int. Things J., 2016, 3, (6), pp. 13461354.
    2. 2)
      • 32. Li, X., Matthaiou, M., Liu, Y., et al: ‘Multi-pair two-way massive MIMO relaying with hardware impairments over Rician fading channels’. IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018.
    3. 3)
      • 21. Lei, H., Zhang, J., Park, K., et al: ‘On secure NOMA systems with transmit antenna selection schemes’, IEEE Access, 2017, 5, pp. 1745017464.
    4. 4)
      • 26. Yeoh, P.L., Yang, N., Kim, K.J.: ‘Secrecy outage probability of selective relaying wiretap channels with collaborative eavesdropping’. IEEE Global Commun. Conf. (GLOBECOM), San Diego, 2015, pp. 16.
    5. 5)
      • 24. Zhang, H., Lei, H., Ansari, I., et al: ‘Security performance analysis of DF cooperative relay networks over Nakagami-m fading channels’, KSII Trans. Int. Inf. Syst., 2017, 11, (5), pp. 24162432.
    6. 6)
      • 22. Liu, Y., Qin, Z., Elkashlan, M., et al: ‘Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks’, IEEE Trans. Wirel. Commun., 2017, 16, (3), pp. 16561672.
    7. 7)
      • 28. Li, X., Huang, M., Tian, X., et al: ‘Impact of hardware impairments on large-scale MIMO systems over composite RG fading channels’, AEU-Int. J. Electron. Commun., 2018, 88, pp. 134140.
    8. 8)
      • 29. Bjornson, E., Hoydis, J., Kountouris, M., et al: ‘Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits’, IEEE Trans. Inf. Theory, 2014, 60, (11), pp. 71127139.
    9. 9)
      • 20. Peters, S., Heath, R..: ‘Nonregenerative MIMO relaying with optimal transmit antenna selection’, IEEE Signal Process. Lett., 2008, 15, pp. 421424.
    10. 10)
      • 31. Studer, C., Wenk, M., Burg, A.: ‘MIMO transmission with residual transmit-RF impairments’. Proc. ITG/IEEE Workshop Smart Antennas, Bremen, 2010, pp. 189196.
    11. 11)
      • 37. Ding, X., Song, T., Zou, Y., et al: ‘Security-reliability tradeoff analysis of artificial noise aided two-way opportunistic relay selection’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 39303941.
    12. 12)
      • 4. Li, X., Li, J., Li, L., et al: ‘Performance analysis of cooperative small cell systems under correlated Rician/Gamma fading channels’, IET Signal Process., 2018, 12, (1), pp. 6473.
    13. 13)
      • 25. Tang, X., Yang, W., Cai, Y., et al: ‘Security of full-duplex jamming SWIPT system with multiple non-colluding eavesdroppers’. Int. Conf. on Electronics Information and Emergency Communication (ICEIEC), Macau, 2017, pp. 6669.
    14. 14)
      • 18. Son, P.N., Kong, H.Y.: ‘Cooperative communication with energy harvesting relays under physical layer security’, IET Commun., 2015, 9, (17), pp. 21312139.
    15. 15)
      • 41. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, New York, USA, 2005).
    16. 16)
      • 43. Chen, Z., Chi, Z., Li, Y., et al: ‘Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 424431.
    17. 17)
      • 30. Li, X., Li, J., Jin, J., et al: ‘Performance analysis of relaying systems over Nakagami-m fading with transceiver hardware impairments’, Xian Dianzi Keji Daxue J. Xidian Univ., 2017, 25, (3), pp. 135140.
    18. 18)
      • 38. Gabry, F., Thobaben, R., Skoglund, M.: ‘Outage performances for amplify-and-forward, decode-and-forward and cooperative jamming strategies for the wiretap channel’. IEEE Wireless Communication Networks Conf., Cancun, Quintana Roo, 2011, pp. 13281333.
    19. 19)
      • 11. Lei, H., Ansari, I.S., Pan, G., et al: ‘Secrecy capacity analysis over αμ fading channels’, IEEE Commun. Lett., 2017, 21, (6), pp. 14451448.
    20. 20)
      • 6. Chen, X., Guo, L., Li, X., et al: ‘Secrecy rate optimization for cooperative cognitive radio networks aided by a wireless energy harvesting jammer’, IEEE Access, 2018, 6, pp. 3412734134.
    21. 21)
      • 7. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    22. 22)
      • 23. Lei, H., Zhang, H., Ansari, I., et al: ‘On secrecy outage of relay selection in underlay cognitive radio networks over Nakagami-m fading channels’, IEEE Trans. Cogn. Commun. Netw., 2017, 3, (4), pp. 614627.
    23. 23)
      • 3. Lv, T., Ma, Y., Zeng, J., et al: ‘Millimeter-wave NOMA transmission in cellular M2M communications for internet of things’, IEEE Int. Things J., 2018, 5, (3), pp. 19892000.
    24. 24)
      • 5. Diez, F.P., Touceda, D.S., Sierra Camara, J.M., et al: ‘Toward self-authenticable wearable devices’, IEEE Wirel. Commun., 2015, 22, (1), pp. 3643.
    25. 25)
      • 9. Ahmed, M., Bai, L.: ‘Secrecy capacity of artificial noise aided secure communication in MIMO Rician channels’, IEEE Access, 2018, 6, pp. 79217929.
    26. 26)
      • 40. Bjornson, E., Matthaiou, M., Debbah, M.: ‘A new look at dual-hop relaying: performance limits with hardware impairments’, IEEE Trans. Commun., 2013, 61, (11), pp. 45124525.
    27. 27)
      • 17. Zou, Y., Wang, X., Shen, W.: ‘Optimal relay selection for physical layer security in cooperative wireless networks’, IEEE J. Sel. Areas Commun., 2013, 31, (10), pp. 20992111.
    28. 28)
      • 10. Lei, H., Gao, C., Guo, Y., et al: ‘On physical layer security over generalized Gamma fading channels’, IEEE Commun. Lett., 2015, 19, (7), pp. 12571260.
    29. 29)
      • 12. Sun, J., Li, X., Huang, M., et al: ‘Performance analysis of physical layer security over κμ shadowed fading channels’, IET Commun., 2018, 12, (8), pp. 970975.
    30. 30)
      • 27. Schenk, T.: ‘RF imperfections in high-rate wireless systems: impact and digital compensation’ (Springer, Eindhoven, Netherland, 2008).
    31. 31)
      • 35. Yang, T., Zhang, R., Cheng, X., et al: ‘Secure massive MIMO under imperfect CSI: performance analysis and channel prediction’, IEEE Trans. Inf. Forensics Security, 2019, 14, (6), pp. 16101623.
    32. 32)
      • 39. Peng, L., Zang, G., Zhou, Q., et al: ‘Security performance analysis for cooperative communication system under Nakagami-m fading channel’. IEEE 17th Int. Conf. Communication Technologies, Chengdu, 2017, pp. 187192.
    33. 33)
      • 14. Deng, C., Zhao, X., Zhang, D., et al: ‘Performance analysis of NOMA-based relaying networks with transceiver hardware impairments’, KSII Trans. Int. Inf. Syst., 2018, 12, pp. 42954316.
    34. 34)
      • 15. Li, X., Li, J., Li, L., et al: ‘Performance analysis of impaired SWIPT NOMA relaying networks over imperfect Weibull channels’, IEEE Syst. J., 2019, 99, (99), pp. 14.
    35. 35)
      • 36. Yang, T., Zhang, R., Cheng, X., et al: ‘Performance analysis of secure communication in massive MIMO with imperfect channel state information’. IEEE Int. Conf. on Communications (ICC), Kansas, 2018, pp. 16.
    36. 36)
      • 19. Asaad, S., Bereyhi, A., Rabiei, A., et al: ‘Optimal transmit antenna selection for massive MIMO wiretap channels’, IEEE J. Sel. Areas Commun., 2018, 36, (4), pp. 817828.
    37. 37)
      • 33. Li, X., Li, J., Mathiopoulos, P.T., et al: ‘Joint impact of hardware imperfect CSI on cooperative SWIPT NOMA multi-relaying system’. IEEE CIC Int. Conf. on Communications in China ICCC/CIC, Beijing, 2018.
    38. 38)
      • 16. Wu, L., Yang, L., Chen, J., et al: ‘Physical layer security for cooperative relaying over generalized-K fading channels’, IEEE Wirel. Commun. Lett., 2018, 7, (4), pp. 14.
    39. 39)
      • 13. Liu, K.R.: ‘Cooperative communications and networking’ (Cambridge University Press, New York, USA, 2009).
    40. 40)
      • 34. Li, X., Li, J., Liu, Y., et al: ‘Outage performance of cooperative NOMA networks with hardware impairments’. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018.
    41. 41)
      • 2. Zhang, W., He, W., Wu, D., et al: ‘Joint mode selection, link allocation and power control in underlaying D2D communication’, KSII Trans. Int. Inf. Syst., 2016, 10, (11), pp. 52095228.
    42. 42)
      • 42. Liu, Y., Ding, Z., Elkashlan, M., et al: ‘Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 938953.
    43. 43)
      • 8. Ammari, M., Fortier, P.: ‘Physical layer security of multiple-input-multiple-output systems with transmit beamforming in Rayleigh fading’, IET Commun., 2015, 9, (8), pp. 10961103.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.0011
Loading

Related content

content/journals/10.1049/iet-com.2019.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address