Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Prolonging smart grid network lifetime through optimising number of sensor nodes and packet length

In the era of internet-of-things (IoT), many applications utilise wireless sensor networks (WSNs) including smart grids (SGs). Designing WSNs to fulfill the SGs requirements imposes some challenges such as limited power and signal propagation impairments, especially, in harsh environments. Consequently, saving power consumption in WSNs-based SGs is among the most significant challenges. The total power required at a certain sensor depends on two main parameters: the packet length and inter-node distance. This paper investigates the optimal packet length and inter-node distance to be utilised in a SG over six different environments aiming at maximising the network lifetime. The investigation is based on a link-layer model using Tmote Sky nodes taking into consideration the six environments impact. A mixed-integer programming (MIP) model is utilised to determine the best packet length and number of nodes for maximising the network lifetime. This model analyses the performance of maximum SG network lifetime over those environments and addresses the inter-node distance effect on the network lifetime maximisation. Simulation results show that decreasing the number of nodes covering a certain area is preferable to prolonging the network lifetime. Furthermore, for the considered models, the longer the packet length is, the longer the network lifetime will be.

References

    1. 1)
      • 16. Kurt, S., Yildiz, H.U., Yigit, M., et al: ‘Packet size optimization in wireless sensor networks for smart grid applications’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 23922401.
    2. 2)
      • 20. Rappaport, T.S.: ‘Wireless communications: principles and practice’ (Prentice-Hall PTR, New Jersey, 2002, 2nd edn.).
    3. 3)
      • 2. Han, J., Hu, J., Yang, Y., et al: ‘A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 43984407.
    4. 4)
      • 13. Lu, G., Krishnamachari, B., Raghavendra, C.S.: ‘An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks’. 18th Int. Symp. on Parallel and Distributed Processing, Santa Fe, NM, USA, 2004, pp. 224231.
    5. 5)
      • 3. Chen, M.: ‘Reconfiguration of sustainable thermoelectric generation using wireless sensor network’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 27762783.
    6. 6)
      • 14. Sohrabi, K., Gao, J., Ailawadhi, V., et al: ‘Protocols for self-organization of a wireless sensor network’, IEEE Pers. Commun., 2000, 7, (7), pp. 1627.
    7. 7)
      • 12. Mohammadi, M.S., Zhang, Q., Dutkiewicz, E., et al: ‘Optimal frame length to maximize energy efficiency in ieee 802.15. 6 UWB body area networks’, IEEE Wirel. Commun. Lett., 2014, 3, (4), pp. 397400.
    8. 8)
      • 8. Li, Y., Qi, X., Keally, M., et al: ‘Communication energy modeling and optimization through joint packet size analysis of BSN and WIFI networks’, IEEE Trans. Parallel Distrib. Syst., 2013, 24, (9), pp. 17411751.
    9. 9)
      • 18. Tmote Sky: Datasheet. Available at: https://insense.cs.st-andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf.
    10. 10)
      • 6. Holland, M., Wang, T., Tavli, B., Seyedi, A., Heinzelman, W.: ‘Optimizing physical-layer parameters for wireless sensor networks’, ACM Trans. Sens. Netw. (TOSN), 2011, 7, (4), p. 28.
    11. 11)
      • 17. Cotuk, H., Tavli, B., Bicakci, K., et al: ‘The impact of bandwidth constraints on the energy consumption of wireless sensor networks’. Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, 2014, pp. 27872792.
    12. 12)
      • 22. Schuts, M., Zhu, F., Heydarian, F., et al: ‘Modelling clock synchronization in the chess gmac wsn protocol’. First Workshop on Quantitative Formal Methods: Theory and Applications, The Netherlands, November, 3rd 2009, pp. 4154.
    13. 13)
      • 9. Basagni, S., Petrioli, C., Petroccia, R., et al: ‘Optimized packet size selection in underwater wireless sensor network communications’, IEEE J. Ocean. Eng., 2012, 37, (3), pp. 321337.
    14. 14)
      • 1. Fadel, E., Gungor, V.C., Nassef, L., et al: ‘A survey on wireless sensor networks for smart grid’, Comput. Commun., 2015, 71, pp. 2233.
    15. 15)
      • 19. Gungor, V.C., Lu, B., Hancke, G.P.: ‘Opportunities and challenges of wireless sensor networks in smart grid’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 35573564.
    16. 16)
      • 10. Stojanovic, M.: ‘Optimization of a data link protocol for an underwater acoustic channel’. Oceans 2005, Europe, 2005, vol.1, pp. 6873.
    17. 17)
      • 7. Oto, M.C., Akan, O.B.: ‘Energy-efficient packet size optimization for cognitive radio sensor networks’, IEEE Trans. Wirel. Commun., 2012, 11, (4), pp. 15441553.
    18. 18)
      • 15. Akbas, A., Yildiz, H.U., Tavli, B.: ‘Data packet length optimization for wireless sensor network lifetime maximization’. Proc Int. Conf. on Communications (COMM), Bucharest, Romania, May 2014, pp. 16.
    19. 19)
      • 21. Kilic, N., Gungor, V.C.: ‘Analysis of low power wireless links in smart grid environments’, Comput. Netw., 2013, 57, (5), pp. 11921203.
    20. 20)
      • 23. Lanzisera, S., Pister, K.S.: ‘Theoretical and practical limits to sensitivity in ieee 802.15. 4 receivers’. 14th Int. Conf. on Electronics, Circuits and Systems (ICECS), Marrakech, Morocco, 2007, pp. 13441347.
    21. 21)
      • 11. Yaakob, N., Khalil, I.: ‘Packet size optimization for congestion control in pervasive healthcare monitoring’. Int. Conf. on Information Technology and Applications in Biomedicine (ITAB), Corfu, Greece, 2010, pp. 14.
    22. 22)
      • 5. Yildiz, H.U., Tavli, B., Yanikomeroglu, H.: ‘Transmission power control for link-level handshaking in wireless sensor networks’, IEEE Sens. J., 2016, 16, (6), pp. 561576.
    23. 23)
      • 4. Yigit, M., Yoney, E.A., Gungor, V.C.: ‘Performance of mac protocols for wireless sensor networks in harsh smart grid environment’. First Int. Black Sea Conf. on Communications and Networking (BlackSeaCom), Batumi, Georgia, 2013, pp. 5053.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6272
Loading

Related content

content/journals/10.1049/iet-com.2018.6272
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address