access icon free Performance analysis of the odd–even uniform interleaver for turbo codes

Interleaver design has been an intense research area since the invention of turbo codes, both from theoretical and technological perspectives, still receiving the attention of engineers. This work is a theoretical treatment on the subject of interleaver design, bringing into focus the odd-even constraint. Odd-even interleavers constrain information symbols at odd (even) positions to remain at odd (even) positions after interleaving. Having been adopted in a range of operational communication standards as parts of turbo codes on the one hand, and having raised scepticism about their gain in the literature of turbo trellis-coded modulation on the other hand, these interleavers have motivated the present article. Concretely, the authors perform a bit-error analysis of turbo-code ensembles generated by the odd–even uniform interleaver, following the union-bound approach by Benedetto et al. for the analysis of the uniform interleaver. They find that the odd–even constraint does not affect the interleaver gain of uniform-interleaver ensembles; rather, it triggers a redistribution of multiplicities that leads to slightly worse performance mainly in the error-floor region. The authors' findings are corroborated by bit-error-rate simulations.

Inspec keywords: turbo codes; error statistics; interleaved codes; trellis coded modulation; error analysis

Other keywords: turbo trellis-coded modulation; turbo codes; odd-even constraint; interleavers constrain information symbols; turbo-code ensembles; odd-even uniform interleaver; interleaver design; bit-error analysis; interleaver gain; uniform-interleaver ensembles; theoretical treatment; performance analysis

Subjects: Codes; Other topics in statistics; Error analysis in numerical methods

References

    1. 1)
      • 40. Ryan, W., Lin, S.: ‘Channel codes: classical and modern’ (Cambridge University Press, Cambridge, UK2009, 1st edn.).
    2. 2)
      • 26. Robertson, P., Woerz, T.: ‘Bandwidth-efficient turbo trellis-coded modulation using punctured component codes’, IEEE J. Sel. Areas Commun., 1998, 16, (2), pp. 206218.
    3. 3)
      • 10. Duman, T.M., Salehi, M.: ‘New performance bounds for turbo codes’, IEEE Trans. Commun., 1998, 46, (6), pp. 717723.
    4. 4)
      • 37. Wang, G., Shen, H., Sun, Y., et al: ‘Parallel interleaver design for a high throughput HSPA+/LTE multi-standard turbo decoder’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (5), pp. 13761389.
    5. 5)
      • 30. Sun, H., Ng, S.X., Dong, C., et al: ‘Decode-and-forward cooperation-aided triple-layer turbo-trellis-coded hierarchical modulation’, IEEE Trans. Commun., 2015, 63, (4), pp. 11361148.
    6. 6)
      • 14. i Fàbregas, A.G., Caire, G.: ‘Coded modulation in the block-fading channel: coding theorems and code construction’, IEEE Trans. Inf. Theory, 2006, 52, (1), pp. 91114.
    7. 7)
      • 3. Benedetto, S., Montorsi, G.: ‘Unveiling turbo codes: some results on parallel concatenated coding schemes’, IEEE Trans. Inf. Theory, 1996, 42, (2), pp. 409428.
    8. 8)
      • 32. Hara, T., Ishibashi, K., Ng, S.X., et al: ‘Low-complexity generator polynomial search for turbo trellis-coded spatial modulation using symbol-based EXIT charts’. Proc. 10th Int. Symp. Turbo Codes, Hong Kong, December 2018, pp. 15.
    9. 9)
      • 31. Matsumine, T., Ochiai, H.: ‘Capacity-approaching non-binary turbo codes: A hybrid design based on EXIT charts and union bounds’, IEEE Access, 2018, 6, pp. 7095270963.
    10. 10)
      • 38. Nieminen, E.: ‘A contention-free parallel access by butterfly networks for turbo interleavers’, IEEE Trans. Inf. Theory, 2014, 60, (1), pp. 237251.
    11. 11)
      • 20. Weithoffer, S., Nour, C.A., Wehn, N., et al: 25 years of turbo codes: from Mb/s to beyond 100 Gb/s'. Proc. 10th Int. Symp. Turbo Codes, Hong Kong, December 2018, pp. 16.
    12. 12)
      • 23. Declerq, D., Fossorier, M., Biglieri, E. (Eds.): ‘Channel coding: theory, algorithms, and applications’ (Academic Press, Oxford, UK2014, 1st edn.).
    13. 13)
      • 19. Xiang, L., Brejza, M.F., Maunder, R.G., et al: ‘Arbitrarily parallel turbo decoding for ultra-reliable low latency communication in 3GPP LTE’, IEEE J. Sel. Areas Commun., 2019, 37, (4), pp. 826838.
    14. 14)
      • 27. Ogiwara, H., Yano, M.: ‘Improvement of turbo trellis-coded modulation system’, IEICE Trans. Funda., 1998, E81-A, (10), pp. 20402046.
    15. 15)
      • 17. ETSI EN 301 545-2: ‘Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard’, 2014, v.1.2.1.
    16. 16)
      • 18. Maunder, R.G.: ‘A fully-parallel turbo decoding algorithm’, IEEE Trans. Commun., 2015, 63, (8), pp. 27622775.
    17. 17)
      • 41. Lin, S., Costello, D.J., Jr.: ‘Error control coding: fundamentals and applications’ (Pearson, Prentice-Hall, USA, 2004, 2nd edn.).
    18. 18)
      • 34. Ng, S.X., Alamri, O.R., Li, Y., et al: ‘Near-capacity turbo trellis coded modulation design based on EXIT charts and union bounds’, IEEE Trans. Commun., 2008, 56, (12), pp. 20302039.
    19. 19)
      • 43. Forney, G.D., Jr., Ungerboeck, G.: ‘Modulation and coding for linear Gaussian channels’, IEEE Trans. Inf. Theory, 1998, 44, (6), pp. 23842415.
    20. 20)
      • 28. Fragouli, C., Wesel, R.D.: ‘Turbo-encoder design for symbol-interleaved parallel concatenated trellis-coded modulation’, IEEE Trans. Commun., 2001, 49, (3), pp. 425435.
    21. 21)
      • 7. Benedetto, S., Divsalar, D., Montorsi, G., et al: ‘Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding’, IEEE Trans. Inf. Theory, 1998, 44, (3), pp. 909926.
    22. 22)
      • 29. Wu, Y.J., Ogiwara, H.: ‘Symbol-interleaver design for turbo trellis-coded modulation’, IEEE Commun. Lett., 2004, 8, (10), pp. 632634.
    23. 23)
      • 12. Breiling, M.: ‘A logarithmic upper bound on the minimum distance of turbo codes’, IEEE Trans. Inf. Theory, 2004, 50, (8), pp. 16921710.
    24. 24)
      • 42. Perez, L.C., Seghers, J., Costello, D.J., et al: ‘A distance spectrum interpretation of turbo codes’, IEEE Trans. Inf. Theory, 1996, 42, (6), pp. 16981709.
    25. 25)
      • 44. Chatzigeorgiou, I., Rodrigues, M.R.D., Wassell, I.J., et al: ‘Analysis and design of punctured rate-1/2 turbo codes exhibiting low error floors’, IEEE J. Sel. Areas Commun., 2009, 27, (6), pp. 944953.
    26. 26)
      • 4. Richardson, T., Urbanke, R.: ‘Thresholds for turbo codes’. Proc. Int. Symp. Inf. Theory, Sorrento, Italy, June 2000, pp. 317.
    27. 27)
      • 45. Dolinar, S., Divsalar, D.: ‘Weight distributions for turbo codes using random and nonrandom permutations’. TDA Progress Rep. 42-122, 1995, pp. 56–65.
    28. 28)
      • 11. Sason, I., Shamai (Shitz), S.: ‘Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum’, IEEE Trans. Inf. Theory, 2000, 46, (1), pp. 2447.
    29. 29)
      • 39. Garzón-Bohórquez, R., Nour, C.A., Douillard, C.: ‘Protograph-based interleavers for punctured turbo codes’, IEEE Trans. Commun., 2018, 66, (5), pp. 18331844.
    30. 30)
      • 25. Nachmani, E., Marciano, E., Lugosch, L., et al: ‘Deep learning methods for improved decoding of linear codes’, IEEE J. Sel. Top. Signal Process., 2018, 12, (1), pp. 119131.
    31. 31)
      • 8. Jin, H., McEliece, R.J.: ‘Coding theorems for turbo code ensembles’, IEEE Trans. Inf. Theory, 2002, 48, (6), pp. 14511461.
    32. 32)
      • 1. Shannon, C.E.: ‘A mathematical theory of communication’, Bell Syst. Tech. J., 1948, 27, pp. 379423, 623656.
    33. 33)
      • 36. Barbulescu, A.S., Pietrobon, S.S.: ‘Interleaver design for turbo codes’, IET Electron. Lett., 1994, 30, (25), pp. 21072108.
    34. 34)
      • 24. Gruber, T., Cammerer, S., Hoydis, J., et al: ‘On deep learning-based channel decoding’. Proc. Annual Conf. on Information Sciences and Systems, Baltimore, MD, USA, March 2017, pp. 16.
    35. 35)
      • 15. 3GPP TS 36.212: ‘LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding’. 2017, v.14.2.0.
    36. 36)
      • 2. Berrou, C., Glavieux, A., Thitimajshima, P.: ‘Near Shannon limit error-correcting coding and decoding: turbo-codes’. Proc. Int. Conf. Communication, Geneva, Switzerland, May 1993, pp. 10641070.
    37. 37)
      • 22. Dizdar, O., Arikan, E.: ‘A high-throughput energy-efficient implementation of successive cancellation decoder for polar codes using combinational logic’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2016, 63, (3), pp. 436447.
    38. 38)
      • 6. Divsalar, D., Jin, H., McEliece, R.J.: ‘Coding theorems for ‘turbo-like’ codes’. Proc. 36th Annual Allerton Conf. on Communication, Control, and Computing, Monticello, Illinois, USA, September 1998, pp. 201210.
    39. 39)
      • 21. Zhang, K., Huang, X., Wang, Z.: ‘High-throughput layered decoder implementation for quasi-cyclic LDPC codes’, IEEE J. Sel. Areas Commun., 2009, 27, (6), pp. 985994.
    40. 40)
      • 5. Mohammadi, A.H.S., Zhuang, W.: ‘Variance of the turbo code performance bound over the interleavers’, IEEE Trans. Inf. Theory, 2002, 48, (7), pp. 20782086.
    41. 41)
      • 35. Arkoudogiannis, K.S., Dimakis, C.E., Koutsouvelis, K.V.: ‘Turbo trellis-coded modulation: A distance spectrum view at the odd-even constraint’. Proc. 9th Int. Symp. Turbo Codes, Brest, France, September 2016, pp. 7680.
    42. 42)
      • 16. IEEE 802.16-2017: ‘Standard for Air Interface for Broadband Wireless Access Systems’, 2017.
    43. 43)
      • 9. ten Brink, S.: ‘Convergence behavior of iteratively decoded parallel concatenated codes’, IEEE Trans. Commun., 2001, 49, (10), pp. 17271737.
    44. 44)
      • 13. Perotti, A., Benedetto, S.: ‘An upper bound on the minimum distance of serially concatenated convolutional codes’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 55015509.
    45. 45)
      • 33. Ogiwara, H., Mizutome, A., Koike, K.: ‘Performance evaluation of parallel concatenated trellis-coded modulation’, IEICE Trans. Fundam., 2001, E84-A, (10), pp. 24102417.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6250
Loading

Related content

content/journals/10.1049/iet-com.2018.6250
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading