access icon free Goodput-maximised data delivery scheme for battery-free wireless sensor network

In the battery-free wireless sensor network (BF-WSN) that harvests radio signal energy, data delivery suffers from a longer delay arising from the energy-harvesting period. It is significant to develop an energy-efficient, low-delay, and reliable data gathering scheme for the BF-WSN. The goodput-maximised data delivery scheme (GDDS) is proposed to reliably collect time-constrained data in the IEEE 802.15.4-based BF-WSN. Under the GDDS, the sink's operation period consists of multiple data gathering cycles with each incorporating three phases: charging the nodes, assigning channel occupation time for the nodes, and receiving packets from the nodes. The scheme of accumulating correct data blocks (SACDB) is used in the third phase for the sink to gather data from the nodes. The authors develop an analytical model for the SACDB, from which they derive the time and the energy consumed in transmitting a packet. Then, they derive the goodput and the energy efficiency under the proposed GDDS. The GDDS aims at maximising the goodput by optimising the charging period, the number of data blocks, and the maximum number of transmission trials under the constraint on data gathering time. Simulation results show the GDDS outperforms the existing schemes in terms of the goodput and energy efficiency.

Inspec keywords: data communication; telecommunication network reliability; energy harvesting; wireless sensor networks; energy conservation; Zigbee; channel allocation; telecommunication power management

Other keywords: transmission trials; energy consumption; reliable data gathering scheme; GDDS; data gathering time; IEEE 802.15.4-based BF-WSN; data blocks; energy-harvesting period; SACDB; receiving packets; sink operation period; goodput-maximised data delivery scheme; battery-free wireless sensor network; multiple data gathering cycles; time-constrained data collection; radio signal energy harvesting; energy efficiency; analytical model; charging period optimization; low-delay; channel occupation time assignment

Subjects: Reliability; Telecommunication systems (energy utilisation); Energy harvesting; Wireless sensor networks; Energy harvesting

References

    1. 1)
      • 13. Zhu, Y.-H., Chi, K., Tian, X., et al: ‘Network coding-based reliable IPv6 packet delivery over IEEE 802.15.4 wireless personal area networks’, IEEE Trans. Veh. Technol., 2016, 64, (4), pp. 22192230.
    2. 2)
      • 21. Abad, M.S.H., Ercetin, O., Elbatt, T., et al: ‘Wireless energy and information transfer in networks with hybrid ARQ’. Wireless Communications and Networking Conf. (WCNC), Barcelona, Spain, 2018, pp. 16.
    3. 3)
      • 11. Kim, S.J., Park, C.S., Lee, S.G.: ‘A 2.4-GHz ternary sequence spread spectrum OOK transceiver for reliable and ultra-low power sensor network applications’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2017, 64, (11), pp. 29762987.
    4. 4)
      • 15. Park, Y.-T., Sthapit, P., Lee, D.-H., et al: ‘Data fragmentation scheme with block ACK in wireless sensor networks’. 2011 5th FTRA Int. Conf. on Multimedia and Ubiquitous Engineering (MUE), Loutraki, Greece, 2011, pp. 7983.
    5. 5)
      • 1. Zhu, Y.H., Li, E., Chi, K.: ‘Encoding scheme to reduce energy consumption of delivering data in radio frequency powered battery-free wireless sensor networks’, IEEE Trans. Veh. Technol., 2018, 67, (4), pp. 30853097.
    6. 6)
      • 3. Porcarelli, D., Spenza, D., Brunelli, D., et al: ‘Adaptive rectifier driven by power intake predictors for wind energy harvesting sensor networks’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (2), pp. 471482.
    7. 7)
      • 7. Choi, K.W., Ginting, L., Rosyady, P.A., et al: ‘Wireless-powered sensor networks: how to realize’, IEEE Trans. Wirel. Commun., 2017, 16, (1), pp. 221234.
    8. 8)
      • 14. Zhu, Y.-H., Qiu, S., Chi, K., et al: ‘Latency aware IPv6 packet delivery scheme over IEEE 802.15.4 based battery-free wireless sensor networks’, IEEE Trans. Mob. Comput., 2016, 16, (6), pp. 16911704.
    9. 9)
      • 23. LAN MAN Standards Committee of the IEEE Computer Society: ‘IEEE 802.11 Standard-wireless LAN medium access control and physical layer specifications’. 2016.
    10. 10)
      • 19. Deok Park, Y., Jeon, S., Jeong, J., et al: ‘FlexVi: PHY aided flexible multicast for video streaming over IEEE 802.11 WLANs’, IEEE Trans. Mob. Comput., 2019, (Early Access).
    11. 11)
      • 10. Sunny, A., Kuri, J.: ‘A framework for designing multihop energy harvesting sensor networks’, IEEE J. Sel. Areas Commun., 2016, 34, (5), pp. 14911501.
    12. 12)
      • 2. Tan, W.M., Sullivan, P., Watson, H., et al: ‘An indoor test methodology for solar-powered wireless sensor networks’, ACM Trans. Embedded Comput. Syst., 2017, 16, (3), p. 82.
    13. 13)
      • 8. Li, K., Ni, W., Duan, L., et al: ‘Wireless power transfer and data collection in wireless sensor networks’, IEEE Trans. Veh. Technol., 2018, 67, (3), pp. 26862697.
    14. 14)
      • 6. Song, C., Huang, Y., Zhou, J., et al: ‘A high-efficiency broadband rectenna for ambient wireless energy harvesting’, IEEE Trans. Antennas Propag., 2015, 63, (8), pp. 34863495.
    15. 15)
      • 31. El-Sherif, M., Fahmy, Y., Kamal, H.: ‘Lifetime maximisation of disjoint wireless sensor networks using multiobjective genetic algorithm’, IET Wirel. Sens. Syst., 2018, 8, (5), pp. 200207.
    16. 16)
      • 32. Zhang, Q., Li, F., Wang, Y.: ‘Mobile crowd wireless charging towards re-chargeable sensors for internet of things’, IEEE Internet Things J., 2018, 5, (6), pp. 53375347.
    17. 17)
      • 18. Angelopoulos, G., Médard, M., Chandrakasan, A.P.: ‘Harnessing partial packets in wireless networks: throughput and energy benefits’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 694704.
    18. 18)
      • 29. Qu, Y., Ng, B.: ‘The effect of carrier sensing mechanisms on wireless mesh network goodput’. Int. Telecommunication Networks and Applications Conf. (ITNAC), Sydney, NSW, Australia, 2015, pp. 106113.
    19. 19)
      • 26. Chi, K., Zhu, Y.-H., Li, Y.: ‘Efficient data collection in wireless powered communication networks with node throughput demands’, Comput. Commun., 2018, 126, pp. 110.
    20. 20)
      • 22. Donatiello, L., Marfia, G., Bujari, A., et al: ‘A simulation model for event goodput estimation in real-time sensor networks’. 2017 IEEE/ACM 21st Int. Symp. in Distributed Simulation and Real Time Applications (DS-RT), Rome, Italy, 2017, pp. 17.
    21. 21)
      • 27. Akyildiz, I.F., Vuran, M.C.: ‘Wireless sensor networks’, vol. 4 (John Wiley & Sons, United Kingdom, 2010).
    22. 22)
      • 30. Pradhan, D., Wang, S., Ali, S., et al: ‘CBGA-ES+: a cluster-based genetic algorithm with non-dominated elitist selection for supporting multi-objective test optimization’, IEEE Trans. Softw. Eng., 2018, (Early Access).
    23. 23)
      • 9. Ateniese, G., Bianchi, G., Capossele, A.T., et al: ‘Low-cost standard signatures for energy-harvesting wireless sensor networks’, ACM Trans. Embedded Comput. Syst., 2017, 16, (3), p. 64.
    24. 24)
      • 28. Ross, S.M.: ‘Introduction to probability models’ (Academic Press, Holland, 2014, 11th edn.).
    25. 25)
      • 25. Huang, P., Wang, C., Xiao, L.: ‘RC-MAC: a receiver-centric MAC protocol for event-driven wireless sensor networks’, IEEE Trans. Comput., 2015, 64, (4), pp. 11491161.
    26. 26)
      • 5. Mao, J., Zou, Z., Zheng, L.-R.: ‘A UWB-based sensor-to-time transmitter for RF-powered sensing applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (5), pp. 503507.
    27. 27)
      • 16. Zhu, Y.-H., Xu, H., Chi, K., et al: ‘Accumulating error-free frame blocks to improve throughput for IEEE 802.11-based WLAN’, J. Netw. Comput. Appl., 2012, 35, (2), pp. 743752.
    28. 28)
      • 20. LAN MAN Standards Committee of the IEEE Computer Society: ‘IEEE 802.15.4 standard for wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs)’. 2011.
    29. 29)
      • 12. Liu, J., Chen, W., Letaief, K.B.: ‘Delay optimal scheduling for ARQ-aided power-constrained packet transmission over multi-state fading channels’, IEEE Trans. Wirel. Commun., 2017, 16, (11), pp. 71237137.
    30. 30)
      • 17. Willig, A.: ‘Intermediate checksums for improving goodput over error-prone links’. Proc. IEEE 60th Vehicular Technology Conf. (VTC), Los Angeles, CA, USA, 2004, vol. 3, pp. 21232128.
    31. 31)
      • 24. LAN MAN Standards Committee of the IEEE Computer Society: ‘Part 15.4: low-rate wireless personal area networks (LR-WPANs) amendment 3: physical layer (PHY) specifications for low data-rate, wireless, smart metering utility networks’. 2012.
    32. 32)
      • 4. Pan, H., Jing, X., Sun, W., et al: ‘Analysis and design of a bioinspired vibration sensor system in noisy environment’, IEEE/ASME Trans. Mechatronics, 2018, 23, (2), pp. 845855.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6215
Loading

Related content

content/journals/10.1049/iet-com.2018.6215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading