access icon free Rateless transmission of polar codes with information unequal error protection

In this study, a rateless transmission scheme with information unequal error protection (UEP) is proposed by using polar codes. The proposed scheme is suitable for transmissions in time-varying channels, as well as pursues UEP goal of information with different reliability requirements. Firstly, the authors design rateless transmission for an unknown channel via extending polarisation matrix and importance-based puncturing. In particular, an algorithm ensuring full coding gain for UEP performance is proposed on the basis of rateless transmission. Moreover, in consideration of combining flexible successive cancellation list (SCL) decoding with UEP, they further present a size-adapted SCL decoding scheme with reduced complexity. Numerical simulation shows that their proposed rateless scheme based on polar codes could achieve good UEP performance with low complexity in unknown channels.

Inspec keywords: time-varying channels; telecommunication network reliability; matrix algebra; decoding

Other keywords: flexible successive cancellation list decoding; size-adapted SCL decoding scheme; time-varying channels; coding gain; importance-based puncturing; polar codes; UEP performance; information unequal error protection; polarisation matrix; rateless transmission scheme; reliability requirements

Subjects: Reliability; Codes; Linear algebra (numerical analysis)

References

    1. 1)
      • 16. Tal, I., Vardy, A.: ‘List decoding of polar codes’, IEEE Trans. Inf. Theory, 2015, 61, (5), pp. 22132226.
    2. 2)
      • 17. Balatsoukas-Stimming, A., Parizi, M.B., Burg, A.: ‘LLR-based successive cancellation list decoding of polar codes’, IEEE Trans. Signal Process., 2015, 63, (19), pp. 51655179.
    3. 3)
      • 4. Zhang, W., Shao, X., Torki, M., et al: ‘Unequal error protection of JPEG2000 images using short block length turbo codes’, IEEE Commun. Lett., 2011, 15, (6), pp. 659661.
    4. 4)
      • 6. MacKay, D.J.C.: ‘Fountain codes’, IEE Proc. Commun., 2005, 152, (6), pp. 10621068.
    5. 5)
      • 13. Feng, B., Zhang, Q., Jiao, J.: ‘An efficient rateless scheme based on the extendibility of systematic polar codes’, IEEE Access, 2017, 5, pp. 2322323232.
    6. 6)
      • 5. Castura, J., Mao, Y.: ‘Rateless coding over fading channels’, IEEE Commun. Lett., 2006, 10, (1), pp. 4648.
    7. 7)
      • 18. Cui, C., Xiang, W., Wang, Z., et al: ‘Polar codes with the unequal error protection property’, Comput. Commun., 2018, 123, pp. 116125.
    8. 8)
      • 2. Rahnavard, N., Pishro-Nik, H., Fekri, F.: ‘Unequal error protection using partially regular LDPC codes’, IEEE Trans. Commun., 2007, 55, (3), pp. 387391.
    9. 9)
      • 14. Mori, R., Tanaka, T.: ‘Performance of polar codes with the construction using density evolution’, IEEE Commun. Lett., 2009, 13, (7), pp. 519521.
    10. 10)
      • 22. Saber, H., Marsland, I.: ‘An incremental redundancy hybrid ARQ scheme via puncturing and extending of polar codes’, IEEE Trans. Commun., 2015, 63, (11), pp. 39643973.
    11. 11)
      • 23. Niu, K., Chen, K., Lin, J.R.: ‘Beyond turbo codes: rate-compatible punctured polar codes’. Proc. IEEE Int. Conf. on Communication (ICC), Budapest, Hungary, June 2013, pp. 34233427.
    12. 12)
      • 9. Arikan, E.: ‘Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels’, IEEE Trans. Inf. Theory, 2009, 55, (7), pp. 30513073.
    13. 13)
      • 19. Ma, L., Xiong, J., Wei, Y.: ‘An incremental redundancy HARQ scheme for polar codes’, August 2017, arXiv:1708.09679v1.
    14. 14)
      • 7. Huang, J., Fei, Z., Cao, C., et al: ‘On-line fountain codes with unequal error protection’, IEEE Commun. Lett., 2017, 21, (6), pp. 12251228.
    15. 15)
      • 3. Caire, G., Lechner, G.: ‘Turbo codes with unequal error protection’, Electron. Lett., 1996, 32, (7), pp. 629631.
    16. 16)
      • 12. Hong, S.N., Hui, D., Marić, I.: ‘Capacity-achieving rate-compatible polar codes’, IEEE Trans. Inf. Theory, 2017, 63, (12), pp. 76207632.
    17. 17)
      • 8. Fei, Z., Cao, C., Xiao, M., et al: ‘Improved LT codes in low overhead regions for binary erasure channels’, Trans. Emerg. Telecommun. Technol., 2014, 27, (1), pp. 8491.
    18. 18)
      • 20. Zhao, M.M., Zhang, G., Xu, C., et al: ‘An adaptive IR-HARQ scheme for polar codes by polarizing matrix extension’, IEEE Commun. Lett., 2018, 22, (7), pp. 13061309.
    19. 19)
      • 24. Li, B., Shen, H., Tse, D.: ‘An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check’, IEEE Commun. Lett., 2012, 16, (12), pp. 20442047.
    20. 20)
      • 11. Li, B., Tse, D., Chen, K., et al: ‘Capacity-achieving rateless polar codes’. Proc. IEEE Int. Symp. on Information Theory (ISIT), Barcelona, Spain, July 2016, pp. 4650.
    21. 21)
      • 15. Trifonov, P.: ‘Efficient design and decoding of polar codes’, IEEE Trans. Commun., 2012, 60, (11), pp. 32213227.
    22. 22)
      • 1. Kumar, V., Milenkovic, O.: ‘On unequal error protection LDPC codes based on plotkintype constructions’, IEEE Trans. Commun., 2006, 54, (6), pp. 9941005.
    23. 23)
      • 10. Hadi, A., Alsusa, E., Al-Dweik, A.: ‘Information unequal error protection using polar codes’, IET Commun., 2018, 12, (8), pp. 956961.
    24. 24)
      • 21. Vangala, H., Viterbo, E., Hong, Y.: ‘A comparative study of polar code constructions for the AWGN channel’, Mathematics, 2015, (https://arxiv.org/abs/1501.02473).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6194
Loading

Related content

content/journals/10.1049/iet-com.2018.6194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading