access icon free Interference Management and Resource Sharing in Moving Networks

Cellular users on-board vehicles often experience low quality of service (QoS) due to the vehicular penetration loss. Hence, the so-called mobile-cells (MCs) have been proposed as a solution. The envisaged MCs will require additional radio resources, which will lead to poor spectral efficiency. This study proposes new methods by which MCs can share the resources of the other links. Firstly, this study presents resource sharing algorithms according to which, MC's access-link (AL) will share resources either with the backhaul-link (BL) or with a conventional user. Secondly, it proposes a scheme for controlling AL transmit power to reduce the interference caused to BL while maintaining the QoS for the in-vehicle users.

Inspec keywords: quality of service; cellular radio; resource allocation; radio links

Other keywords: mobile-cells; radio resources; MC access-link; spectral efficiency; QoS; mobile-cell environments; resource sharing algorithms; backhaul-link; vehicular penetration loss; cellular user on-board vehicles; quality of service

Subjects: Mobile radio systems

References

    1. 1)
      • 21. Wang, X.: ‘Moving relays in downlink multiuser networks-a physical-layer security perspective’. IEEE 87th Vehicular Technology Conf. (VTC Spring), Porto, Portugal, 2018.
    2. 2)
      • 17. Zhou, Z., Feng, J., Zhang, C., et al: ‘Sagecell: software-defined space-air-ground integrated moving cells’, IEEE Commun. Mag., 2018, 56, (8), pp. 9299.
    3. 3)
      • 3. Tanghe, E., Joseph, W., Verloock, L., et al: ‘Evaluation of vehicle penetration loss at wireless communication frequencies’, IEEE Trans. Veh. Technol., 2008, 57, (5), pp. 20362041.
    4. 4)
      • 35. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, Cambridge, UK, 2005).
    5. 5)
      • 15. Liang, L., Xie, S., Li, G.Y., et al: ‘Graph-based resource sharing in vehicular communication’, IEEE Trans. Wirel. Commun., 2018, 17, (7), pp. 45794592.
    6. 6)
      • 10. Yoon, J., Hwang, G.: ‘Distance-based inter-cell interference coordination in small cell networks: stochastic geometry modeling and analysis’, IEEE Trans. Wirel. Commun., 2018,17, (6), pp. 40894103.
    7. 7)
      • 29. Constantine, A.B., et al: ‘Antenna theory: analysis and design’ (John Wiley & Sons, Hoboken, New Jersey, USA, 2005, 3rd edn.).
    8. 8)
      • 25. Duarte, M., Dick, C., Sabharwal, A.: ‘Experiment-driven characterization of full-duplex wireless systems’, IEEE Trans. Wirel. Commun., 2012, 11, (12), pp. 42964307.
    9. 9)
      • 18. Lin, X., Ganti, R.K., Fleming, P.J., et al: ‘Towards understanding the fundamentals of mobility in cellular networks’, IEEE Trans. Wirel. Commun., 2013, 12, (4), pp. 16861696.
    10. 10)
      • 14. Shah, S.T., Shin, M., Kwon, Y.M., et al: ‘Moving personal-cell network: characteristics and performance evaluation’, China Commun., 2018, 15, (12), pp. 159173.
    11. 11)
      • 27. Ni, W.: ‘A self-learning based antenna system for indoor wireless network’, Int. J. Adv. Pervasive Ubiquit. Comput. (IJAPUC), 2017, 9, (4), pp. 7887.
    12. 12)
      • 13. Ghazzai, H., Bouchoucha, T., Alsharoa, A., et al: ‘Transmit power minimization and base station planning for high-speed trains with multiple moving relays in OFDMA systems’, IEEE Trans. Veh. Technol., 2017, 66, (1), pp. 175187.
    13. 13)
      • 28. Georgiou, O., Wang, S., Bocus, M.Z., et al: ‘DirectionAL-antennas improve the link-connectivity of interference limited ad hoc networks’. IEEE 26th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 2015, pp. 13111316.
    14. 14)
      • 30. Clapham, C., Nicholson, J.: ‘The concise Oxford dictionary of mathematics’ (OUP, Oxford, 2009).
    15. 15)
      • 2. Jaffry, S., Hasan, S.F., Gui, X.: ‘Making a case for the moving small cells’. IEEE 26th Int. Telecommunication Networks and Applications Conf. (ITNAC), Dunedin, New Zealand, 2016.
    16. 16)
      • 34. Zhou, Z., Feng, J., Gu, B., et al: ‘When mobile crowd sensing meets UAV: energy-efficient task assignment and route planning’, IEEE Trans. Commun., 2018, 66, (11), pp. 55265538.
    17. 17)
      • 32. Skiena, S.S.: ‘The algorithm design manual: text’, vol. 1 (Springer Science & Business Media, Berlin, Germany, 1998).
    18. 18)
      • 7. Jaziri, A., Nasri, R., Chahed, T.: ‘Offloading traffic hotspots using moving small cells’. IEEE Int. Conf. on Communications (ICC), Kuala Lumpur, Malaysia, 2016.
    19. 19)
      • 6. Sui, Y., Papadogiannis, A., Yang, W., et al: ‘Performance comparison of fixed and moving relays under co-channel interference’. IEEE Globecom Workshops, Anaheim, CA, USA, 2012, pp. 574579.
    20. 20)
      • 36. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, Cambridge, Massachusetts, USA, 2014).
    21. 21)
      • 1. Wisely, D., Wang, N., Tafazolli, R.: ‘Capacity and costs for 5G networks in dense urban areas’, IET Commun., 2018, 12, (19), pp. 25022510.
    22. 22)
      • 31. Chiu, S.N., Stoyan, D., Kendall, W.S., et al: ‘Stochastic geometry and its applications’ (John Wiley & Sons, USA, 2013).
    23. 23)
      • 26. Moore, S.K.: ‘Super-accurate GPS chips coming to smartphones in 2018’, IEEE Spectr., 2017, 21, pp. 1011.
    24. 24)
      • 20. Jangsher, S., Li, V.O.K.: ‘Resource allocation in cellular networks with moving small cells with probabilistic mobility’. 2014 IEEE 25th Annual Personal, Indoor and Mobile Radio Communications (PIMRC), Washington, DC, USA, 2014.
    25. 25)
      • 19. Chen, Y., Martins, P., Decreusefond, L., et al: ‘Stochastic analysis of a cellular network with mobile relays’. IEEE GLOBECOM, Austin, TX, USA, 2014.
    26. 26)
      • 22. Khan, A., Jamalipour, A.: ‘An outage performance analysis with moving relays on suburban trains for uplink’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 39663975.
    27. 27)
      • 4. Jaffry, S.S., Hasan, S.F., Gui, X.: ‘Mobile cells assisting future cellular communication’, IEEE Potentials, 2018, 37, pp. 1620.
    28. 28)
      • 16. Sui, Y., Papadogiannis, A., Svensson, T.: ‘The potential of moving relays – a performance analysis’. 2012 IEEE 75th Vehicular Technology Conf. (VTC Spring), Yokohama, Japan, May 2012, pp. 15.
    29. 29)
      • 23. Jaffry, S., Hasan, S.F., Gui, X.: ‘Efficient resource-sharing algorithms for mobile-cell's sidehaul and access links’, IEEE Netw. Lett., 2019, 1, (2), pp. 7275.
    30. 30)
      • 11. Jangsher, S., Li, V.O.: ‘Backhaul resource allocation for existing and newly arrived moving small cells’, IEEE Trans. Veh. Technol., 2017, 66, (4), pp. 32113219.
    31. 31)
      • 24. Jaffry, S., Hasan, S.F., Gui, X.: ‘Shared spectrum for mobile-cell's Backhaul and access link’. 2018 IEEE Globecom, Abu Dhabi, UAE, December 2018.
    32. 32)
      • 9. Cheung, W.C., Quek, T.Q., Kountouris, M.: ‘Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks’, IEEE J. Sel. Areas Commun., 2012, 30, pp. 561574.
    33. 33)
      • 33. Molina-Masegosa, R., Gozalvez, J.: ‘LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications’, IEEE Veh. Technol. Mag., 2017, 12, (4), pp. 3039.
    34. 34)
      • 12. Jangsher, S., Li, V.O.K.: ‘Resource allocation in moving small cell network’, IEEE Trans. Wirel. Commun., 2016, 15, (7), pp. 45594570.
    35. 35)
      • 8. Andrews, J.G., Baccelli, F., Ganti, R.K.: ‘A tractable approach to coverage and rate in cellular networks’, IEEE Trans. Commun., 2011, 59, (11), pp. 31223134.
    36. 36)
      • 5. Yasuda, H., Kishida, A., Shen, J., et al: ‘A study on moving cell in 5G cellular system’. 82nd IEEE Vehicular Technology Conf., Boston, MA, USA, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6193
Loading

Related content

content/journals/10.1049/iet-com.2018.6193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading