access icon free LDPC codes based on Mobius transformations

Recently, a class of low-density parity-check (LDPC) codes from affine permutation matrices, called APM-LDPC codes, have attracted because of some advantages rather than QC-LDPC codes in minimum-distance, girth, cycle distribution and error-rate performance. In this study, a new class of LDPC codes based on Mobius transformations, called MT-LDPC codes, are presented as a generalisation of APM-LDPC codes which have some new achievements rather than QC and APM LDPC codes in the terms of length, cycle distribution and error-rate performance. Moreover, each Mobius transformation is represented by a square matrix which is helpful to pursuing the cycles in the Tanner graph of an MT-LDPC code by the product of some square matrices. In continue, for a given base matrix, the authors propose a deterministic algorithm which efficiently produces MT-LDPC codes with the desired girth. Simulation results show that the binary and non-binary constructed MT-LDPC codes outperform APM, QC, PEG, random-like and some algebraic LDPC codes with the same rates and lengths.

Inspec keywords: cyclic codes; parity check codes; matrix algebra; graph theory

Other keywords: Tanner graph; minimum-distance; base matrix; square matrix; low-density parity-check codes; error-rate performance; nonbinary constructed MT-LDPC codes; desired girth; affine permutation matrices; cycle distribution; APM-LDPC codes; QC-LDPC codes; algebraic LDPC codes; Mobius transformation; deterministic algorithm

Subjects: Algebra; Codes; Combinatorial mathematics

References

    1. 1)
      • 32. Andreadou, N., Pavlidou, F.N., Papaharalabos, S., et al: ‘Quasi-cyclic low-density parity-check (QC-LDPC) codes for deep space and high data rate applications’. IEEE Int. Workshop on Satellite and Space Communications (IWSSC 2009), Siena, Italy, September 2009, pp. 225229.
    2. 2)
      • 31. Li, C., Liu, P., Zou, C., et al: ‘Spectral-efficient cellular communications with coexistent one-and two-hop transmissions’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 67656772.
    3. 3)
      • 5. Shieh, W., Djordjevic, I.: ‘OFDM for optical communications’ (Academic Press, San Diego, USA, 2009).
    4. 4)
      • 22. Zhung, G., Sun, R., Wang, X.: ‘Construction of girth-eight QC-LDPC codes from greatest common divisor’, IEEE Commun. Lett., 2013, 17, (2), pp. 369372.
    5. 5)
      • 6. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: ‘Regular and irregular progressive edge-growth tanner graphs’, IEEE Trans. Inf. Theory, 2005, 51, (1), pp. 386398.
    6. 6)
      • 1. Gallager, R.G.: ‘Low-density parity-check codes’, IEEE Trans. Inf. Theory, 1962, 8, (1), pp. 2128.
    7. 7)
      • 25. Tanner, R.M.: ‘A recursive approach to low complexity codes’, IEEE Trans. Inf. Theory, 1981, 27, pp. 533542.
    8. 8)
      • 3. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: ‘Factor graphs and the sum-product algorithm’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 498519.
    9. 9)
      • 20. Liu, K., El-Khamy, M., Lee, J.: ‘Finite-length algebraic spatially-coupled quasi-cyclic LDPC codes’, IEEE J. Sel. Areas Commun., 2016, 34, (2), pp. 329344.
    10. 10)
      • 12. Esmaeili, M., Gholami, M.: ‘Geometrically-structured maximum-girth LDPC block and convolutional codes’, IEEE J. Sel. Areas Commun., 2009, 27, (6), pp. 831845.
    11. 11)
      • 17. O'Sullivan, M.E.: ‘Algebraic construction of sparse matrices with large girth’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 718727.
    12. 12)
      • 14. Gholami, M., Alinia, M.: ‘Explicit APM-LDPC codes with girths 6, 8, and 10’, IEEE Signal Process. Lett., 2017, 24, (6), pp. 741745.
    13. 13)
      • 30. Li, C., Zhang, S., Liu, P., et al: ‘Overhearing protocol design exploiting intercell interference in cooperative green networks’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 441446.
    14. 14)
      • 26. Hashemi, Y., Banihashemi, A.H.: ‘Tight lower and upper bounds on the minimum distance of LDPC codes’, IEEE Commun. Lett., 2018, 22, (1), pp. 3336.
    15. 15)
      • 10. Sobhani, R.: ‘An approach to the construction of regular low-density parity-check codes from group permutation matrices’, IET Commun., 2012, 6, (12), pp. 17501756.
    16. 16)
      • 24. Myung, S., Yang, K., Park, D.S.: ‘A combining method of structured LDPC codes from affine permutation matrices’. Int. Symp. Information Theory (ISIT 2006), Seatle, USA, December 2006, pp. 674678.
    17. 17)
      • 4. Liu, R., Zeng, B., Chen, T., et al: ‘The application of LDPC code in MIMO-OFDM system’, IOP Conf. Ser., Mater. Sci. Eng., 2018, 322, (7), p. 072009.
    18. 18)
      • 35. Zhou, B., Zhang, L., Huang, Q., et al: ‘Constructions of high performance non-binary quasi-cyclic LDPC codes’. IEEE Information Theory Workshop (ITW'08), Porto, Portugal, May 2008, pp. 7175.
    19. 19)
      • 19. Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: ‘Symmetrical constructions for regular girth-8 QC-LDPC codes’, IEEE Trans. Commun., 2017, 65, (1), pp. 1422.
    20. 20)
      • 16. Bocharova, I.E., Hug, F., Johannesson, R., et al: ‘Searching for voltage graph-based LDPC tailbiting codes with large girth’, IEEE Trans. Inf. Theory, 2012, 58, (4), pp. 22652279.
    21. 21)
      • 29. Li, C., Yang, H.J., Sun, F., et al: ‘Multiuser overhearing for cooperative two-way multiantenna relays’, IEEE Trans. Veh. Technol., 2016, 65, (5), pp. 37963802.
    22. 22)
      • 11. Nguyen, D.V., Vasic, B., Marcellin, M., et al: ‘Structured LDPC codes from permutation matrices free of small trapping sets’. IEEE Inf. Theory Workshop (ITW), Cairo, Egypt, 2010, pp. 15.
    23. 23)
      • 34. Ahmed, M.Z., Ambroze, M.A., Tomlinson, M., ‘On Computing Shannon's Sphere Packing Bound and Applications’. ISCTA Files in this item Files Size Format View Ahmed 2007-On_Co …Boundand_Applications. pdf 124.7 Kb PDF View/Open.
    24. 24)
      • 27. Declercq, D., Fossorier, M., Biglieri, E.: ‘Channel coding: theory, algorithms, and applications’ (Academic Press Library in Mobile and Wireless Commun., Academic Press, Waltham MA, USA, 2014).
    25. 25)
      • 7. Jiang, X., Lee, M.H., Qi, J.: ‘Improved progressive edge-growth algorithm for fast encodable LDPC codes’, EURASIP J. Wirel. Commun. Netw., 2012, 1, p. 178.
    26. 26)
      • 21. Sun, C., Xu, H., Feng, D., et al: ‘(3,L) quasi-cyclic LDPC codes: simplified exhaustive search and designs’. IEEE 2016 9th Int. Symp. on Turbo Codes and Iterative Information Processing (ISTC), Brest, France, September 2016, pp. 271275.
    27. 27)
      • 23. Wang, W., Liu, Y., Tang, X., et al: ‘A novel IRA-like codes construction method based on cyclic matrix permutation’. IEEE 2017 2nd Int. Conf. on Image,Vision and Computing (ICIVC), Chengdu, China, June 2017, pp. 909912.
    28. 28)
      • 15. Gholami, M., Alinia, M.: ‘Efficient encoding of APM-LDPC codes’. The 46th Annual Iranian Mathematics Conf., Yazd University, Iran, August 2015, pp. 623.
    29. 29)
      • 33. Su, Y.S.: ‘Constructions of fractional repetition codes with flexible per-node storage and repetition degree’. 2017 IEEE Global Communications Conf. (GLOBECOM), Singapore, December 2017, pp. 16.
    30. 30)
      • 18. Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: ‘Efficient search of girth-optimal QC-LDPC codes’, IEEE Trans. Inf. Theory, 2016, 62, pp. 15521564.
    31. 31)
      • 8. Thorpe, J., ‘Low-density parity-check (LDPC) codes constructed from protographs’. IPN Progress Report, 2003, pp. 42–154.
    32. 32)
      • 28. Richardson, T.J., Shokrollahi, A., Urbanke, R.L.: ‘Design of capacity-approaching irregular low-density parity-check codes’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 619637.
    33. 33)
      • 13. Gholami, M., Alinia, M.: ‘High-performance binary and non-binary low-density parity-check codes based on affine permutation matrices’, IET Commun., 2015, 9, (17), pp. 21142123.
    34. 34)
      • 2. Mackay, D.J.C., Neal, R.M.: ‘Near Shannon limit performance of low density parity check codes’, IET Electron. Lett., 1996, 32, pp. 16451646.
    35. 35)
      • 9. Fossorier, M.P.: ‘Quasi-cyclic low-density parity-check codes from circulant permutation matrices’, IEEE Trans. Inf. Theory, 2004, 50, (8), pp. 17881793.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6192
Loading

Related content

content/journals/10.1049/iet-com.2018.6192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading