http://iet.metastore.ingenta.com
1887

LDPC codes based on Mobius transformations

LDPC codes based on Mobius transformations

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, a class of low-density parity-check (LDPC) codes from affine permutation matrices, called APM-LDPC codes, have attracted because of some advantages rather than QC-LDPC codes in minimum-distance, girth, cycle distribution and error-rate performance. In this study, a new class of LDPC codes based on Mobius transformations, called MT-LDPC codes, are presented as a generalisation of APM-LDPC codes which have some new achievements rather than QC and APM LDPC codes in the terms of length, cycle distribution and error-rate performance. Moreover, each Mobius transformation is represented by a square matrix which is helpful to pursuing the cycles in the Tanner graph of an MT-LDPC code by the product of some square matrices. In continue, for a given base matrix, the authors propose a deterministic algorithm which efficiently produces MT-LDPC codes with the desired girth. Simulation results show that the binary and non-binary constructed MT-LDPC codes outperform APM, QC, PEG, random-like and some algebraic LDPC codes with the same rates and lengths.

References

    1. 1)
      • 1. Gallager, R.G.: ‘Low-density parity-check codes’, IEEE Trans. Inf. Theory, 1962, 8, (1), pp. 2128.
    2. 2)
      • 2. Mackay, D.J.C., Neal, R.M.: ‘Near Shannon limit performance of low density parity check codes’, IET Electron. Lett., 1996, 32, pp. 16451646.
    3. 3)
      • 3. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: ‘Factor graphs and the sum-product algorithm’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 498519.
    4. 4)
      • 4. Liu, R., Zeng, B., Chen, T., et al: ‘The application of LDPC code in MIMO-OFDM system’, IOP Conf. Ser., Mater. Sci. Eng., 2018, 322, (7), p. 072009.
    5. 5)
      • 5. Shieh, W., Djordjevic, I.: ‘OFDM for optical communications’ (Academic Press, San Diego, USA, 2009).
    6. 6)
      • 6. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: ‘Regular and irregular progressive edge-growth tanner graphs’, IEEE Trans. Inf. Theory, 2005, 51, (1), pp. 386398.
    7. 7)
      • 7. Jiang, X., Lee, M.H., Qi, J.: ‘Improved progressive edge-growth algorithm for fast encodable LDPC codes’, EURASIP J. Wirel. Commun. Netw., 2012, 1, p. 178.
    8. 8)
      • 8. Thorpe, J., ‘Low-density parity-check (LDPC) codes constructed from protographs’. IPN Progress Report, 2003, pp. 42–154.
    9. 9)
      • 9. Fossorier, M.P.: ‘Quasi-cyclic low-density parity-check codes from circulant permutation matrices’, IEEE Trans. Inf. Theory, 2004, 50, (8), pp. 17881793.
    10. 10)
      • 10. Sobhani, R.: ‘An approach to the construction of regular low-density parity-check codes from group permutation matrices’, IET Commun., 2012, 6, (12), pp. 17501756.
    11. 11)
      • 11. Nguyen, D.V., Vasic, B., Marcellin, M., et al: ‘Structured LDPC codes from permutation matrices free of small trapping sets’. IEEE Inf. Theory Workshop (ITW), Cairo, Egypt, 2010, pp. 15.
    12. 12)
      • 12. Esmaeili, M., Gholami, M.: ‘Geometrically-structured maximum-girth LDPC block and convolutional codes’, IEEE J. Sel. Areas Commun., 2009, 27, (6), pp. 831845.
    13. 13)
      • 13. Gholami, M., Alinia, M.: ‘High-performance binary and non-binary low-density parity-check codes based on affine permutation matrices’, IET Commun., 2015, 9, (17), pp. 21142123.
    14. 14)
      • 14. Gholami, M., Alinia, M.: ‘Explicit APM-LDPC codes with girths 6, 8, and 10’, IEEE Signal Process. Lett., 2017, 24, (6), pp. 741745.
    15. 15)
      • 15. Gholami, M., Alinia, M.: ‘Efficient encoding of APM-LDPC codes’. The 46th Annual Iranian Mathematics Conf., Yazd University, Iran, August 2015, pp. 623.
    16. 16)
      • 16. Bocharova, I.E., Hug, F., Johannesson, R., et al: ‘Searching for voltage graph-based LDPC tailbiting codes with large girth’, IEEE Trans. Inf. Theory, 2012, 58, (4), pp. 22652279.
    17. 17)
      • 17. O'Sullivan, M.E.: ‘Algebraic construction of sparse matrices with large girth’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 718727.
    18. 18)
      • 18. Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: ‘Efficient search of girth-optimal QC-LDPC codes’, IEEE Trans. Inf. Theory, 2016, 62, pp. 15521564.
    19. 19)
      • 19. Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: ‘Symmetrical constructions for regular girth-8 QC-LDPC codes’, IEEE Trans. Commun., 2017, 65, (1), pp. 1422.
    20. 20)
      • 20. Liu, K., El-Khamy, M., Lee, J.: ‘Finite-length algebraic spatially-coupled quasi-cyclic LDPC codes’, IEEE J. Sel. Areas Commun., 2016, 34, (2), pp. 329344.
    21. 21)
      • 21. Sun, C., Xu, H., Feng, D., et al: ‘(3,L) quasi-cyclic LDPC codes: simplified exhaustive search and designs’. IEEE 2016 9th Int. Symp. on Turbo Codes and Iterative Information Processing (ISTC), Brest, France, September 2016, pp. 271275.
    22. 22)
      • 22. Zhung, G., Sun, R., Wang, X.: ‘Construction of girth-eight QC-LDPC codes from greatest common divisor’, IEEE Commun. Lett., 2013, 17, (2), pp. 369372.
    23. 23)
      • 23. Wang, W., Liu, Y., Tang, X., et al: ‘A novel IRA-like codes construction method based on cyclic matrix permutation’. IEEE 2017 2nd Int. Conf. on Image,Vision and Computing (ICIVC), Chengdu, China, June 2017, pp. 909912.
    24. 24)
      • 24. Myung, S., Yang, K., Park, D.S.: ‘A combining method of structured LDPC codes from affine permutation matrices’. Int. Symp. Information Theory (ISIT 2006), Seatle, USA, December 2006, pp. 674678.
    25. 25)
      • 25. Tanner, R.M.: ‘A recursive approach to low complexity codes’, IEEE Trans. Inf. Theory, 1981, 27, pp. 533542.
    26. 26)
      • 26. Hashemi, Y., Banihashemi, A.H.: ‘Tight lower and upper bounds on the minimum distance of LDPC codes’, IEEE Commun. Lett., 2018, 22, (1), pp. 3336.
    27. 27)
      • 27. Declercq, D., Fossorier, M., Biglieri, E.: ‘Channel coding: theory, algorithms, and applications’ (Academic Press Library in Mobile and Wireless Commun., Academic Press, Waltham MA, USA, 2014).
    28. 28)
      • 28. Richardson, T.J., Shokrollahi, A., Urbanke, R.L.: ‘Design of capacity-approaching irregular low-density parity-check codes’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 619637.
    29. 29)
      • 29. Li, C., Yang, H.J., Sun, F., et al: ‘Multiuser overhearing for cooperative two-way multiantenna relays’, IEEE Trans. Veh. Technol., 2016, 65, (5), pp. 37963802.
    30. 30)
      • 30. Li, C., Zhang, S., Liu, P., et al: ‘Overhearing protocol design exploiting intercell interference in cooperative green networks’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 441446.
    31. 31)
      • 31. Li, C., Liu, P., Zou, C., et al: ‘Spectral-efficient cellular communications with coexistent one-and two-hop transmissions’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 67656772.
    32. 32)
      • 32. Andreadou, N., Pavlidou, F.N., Papaharalabos, S., et al: ‘Quasi-cyclic low-density parity-check (QC-LDPC) codes for deep space and high data rate applications’. IEEE Int. Workshop on Satellite and Space Communications (IWSSC 2009), Siena, Italy, September 2009, pp. 225229.
    33. 33)
      • 33. Su, Y.S.: ‘Constructions of fractional repetition codes with flexible per-node storage and repetition degree’. 2017 IEEE Global Communications Conf. (GLOBECOM), Singapore, December 2017, pp. 16.
    34. 34)
      • 34. Ahmed, M.Z., Ambroze, M.A., Tomlinson, M., ‘On Computing Shannon's Sphere Packing Bound and Applications’. ISCTA Files in this item Files Size Format View Ahmed 2007-On_Co …Boundand_Applications. pdf 124.7 Kb PDF View/Open.
    35. 35)
      • 35. Zhou, B., Zhang, L., Huang, Q., et al: ‘Constructions of high performance non-binary quasi-cyclic LDPC codes’. IEEE Information Theory Workshop (ITW'08), Porto, Portugal, May 2008, pp. 7175.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6192
Loading

Related content

content/journals/10.1049/iet-com.2018.6192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address