Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Proactive channel access scheme for wireless ad hoc networks

In wireless ad hoc networks, the channel access scheme allows different nodes to communicate simultaneously without creating outages at nearby nodes. Therefore, the scheme should be easy to implement, i.e. with as little coordination between the nodes as practically possible and it should be able to schedule the maximum number of concurrent transmissions. The proposed scheduling scheme ensures the spatial separation among packed nodes by suppressing the active interferers around an active receiver. Moreover, the scheme utilises each interferer's transmitter–receiver (Tx-Rx) separation to make a decision regarding its inclusion in the scheduled transmissions. The proposed scheme not only gives significant () increase in the transmission capacity as compared with the random ALOHA but also outperforms the latest guard zone-based scheduling scheme for the distributed ad hoc networks. Additionally, it performs nearly as good as the near-optimal centralised scheduling scheme. While the attainable transmission capacity is comparable but still inferior to the centralised scheme, it can be implemented easily in a distributed manner, unlike the centralised scheme. The derived results provide the optimal guard zone size and corresponding transmission capacity under varying network parameters – outage probability, path-loss exponent, maximum Tx-Rx separation, and spread spectrum's spreading gain.

References

    1. 1)
      • 36. Weber, S., Andrews, X.Y.J.G., de Veciana, G.: ‘Transmission capacity of wireless ad hoc networks with successive interference cancellation’, IEEE Trans. Inf. Theory, 2007, 53, (8), pp. 27992814.
    2. 2)
      • 38. Aljuaid, M., Yanikomeroglu, H.: ‘Investigating the Gaussian convergence of the distribution of the aggregate interference power in large wireless networks’, IEEE Trans. Veh. Technol., 2010, 59, (9), pp. 44184424.
    3. 3)
      • 4. Kim, J., Lee, J., Kim, J., et al: ‘M2M service platforms: survey, issues, and enabling technologies’, IEEE Commun. Surv. Tutor., 2014, 16, (1), pp. 6176.
    4. 4)
      • 35. ‘IEEE Standard for Information technology–Local and metropolitan area networks–Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: IEEE 802.11 Wireless Network Management’. IEEE Std 80211v-2011 (Amendment to IEEE Std 80211-2007 as amended by IEEE Std 80211k-2008, IEEE Std 80211r-2008, IEEE Std 80211y-2008, IEEE Std 80211w-2009, IEEE Std 80211n-2009, IEEE Std 80211p-2010, and IEEE Std 80211z-2010), 2011, pp. 1433.
    5. 5)
      • 3. Asadi, A., Wang, Q., Mancuso, V.: ‘A survey on device-to-device communication in cellular networks’, IEEE Commun. Surv. Tutor., 2014, 16, (4), pp. 18011819.
    6. 6)
      • 28. Gupta, P., Kumar, P.R.: ‘The capacity of wireless networks’, IEEE Trans. Inf. Theory, 2000, 46, (2), pp. 388404.
    7. 7)
      • 37. Sousa, E.S., Silvester, J.: ‘Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network’, IEEE J. Sel. Areas Commun., 1990, 8, (4), pp. 762771.
    8. 8)
      • 39. Foschini, G.J., Miljanic, Z.: ‘A simple distributed autonomous power control algorithm and its convergence’, IEEE Trans Vehicular Technology, 1993, 42, (4), pp. 641646.
    9. 9)
      • 34. Malekshan, K.R., Zhuang, W.: ‘Joint scheduling and transmission power control in wireless ad hoc networks’, IEEE Trans. Wirel. Commun., 2017, 16, (9), pp. 59825993.
    10. 10)
      • 19. Torrieri, D.: ‘Mobile ad hoc and cellular networks’, in Torrieri, D (Ed.): ‘Principles of spread-spectrum communication systems’ (Springer International Publishing, Cham, 2018), pp. 509565.
    11. 11)
      • 25. Bayrakdar, M.E., Çalhan, A.: ‘Performance analysis of proactive decision spectrum handoff for MAC protocols in cognitive radio networks’. 2016 24th Signal Processing and Communication Application Conf. (SIU), Zonguldak, Turkey, 2016, pp. 481484.
    12. 12)
      • 12. Mao, Y., Yan, F., Shen, L.: ‘Multi-round elimination contention-based multi-channel MAC scheme for vehicular ad hoc networks’, IET Commun., 2017, 11, (3), pp. 421427.
    13. 13)
      • 32. Yang, X., de Veciana, G.: ‘Inducing multiscale clustering using multistage MAC contention in CDMA ad hoc networks’, IEEE/ACM Trans. Netw., 2007, 15, (6), pp. 13871400.
    14. 14)
      • 40. Zander, J.: ‘Performance of optimum transmitter power control in cellular radio systems’, IEEE Trans. Veh. Technol., 1992, 41, (1), pp. 5762.
    15. 15)
      • 22. Zikria, Y.B., Ishmanov, F., Afzal, M.K., et al: ‘Opportunistic channel selection MAC protocol for cognitive radio ad hoc sensor networks in the internet of things’, Sustain. Comput. Inf. Syst., 2018, 18, pp. 112120.
    16. 16)
      • 18. Stüber, G.L.: ‘CDMA cellular systems’, in Stüber, G.L (Ed.): ‘Principles of mobile communication’ (Springer International Publishing, Cham, 2017), pp. 563592.
    17. 17)
      • 8. Chintalapalli, R.M., Ananthula, V.R.: ‘M-LionWhale: multi-objective optimisation model for secure routing in mobilead-hocnetwork’, IET Commun., 2018, 12, (12), pp. 14061415.
    18. 18)
      • 13. Cao, X., Song, Z., Yang, B.: ‘Multi-slot reservation-based multi-channel MAC protocol for dense wirelessad-hocnetworks’, IET Commun., 2018, 12, (10), pp. 12631271.
    19. 19)
      • 16. Zhang, J., Dziong, Z., Gagnon, F., et al: ‘Multiuser detection based MAC design for ad hoc networks’, IEEE Trans. Wirel. Commun., 2009, 8, (4), pp. 18361846.
    20. 20)
      • 14. Hasan, A., Ali, A.: ‘Guard zone-based scheduling in ad hoc networks’, Comput. Commun.,, 2015, 56, pp. 8997.
    21. 21)
      • 1. Qiu, T., Chen, N., Li, K., et al: ‘Heterogeneous ad hoc networks: architectures, advances and challenges’, Ad Hoc Netw., 2017, 55, pp. 143152.
    22. 22)
      • 27. Shannon, C.E.: ‘A mathematical theory of communication’, Bell Syst. Tech. J., 1948, 27, (3), pp. 379423.
    23. 23)
      • 31. Baccelli, F., Blaszczyszyn, B., Muhlethaler, P.: ‘An Aloha protocol for multihop mobile wireless networks’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 421436.
    24. 24)
      • 33. Muqattash, A., Krunz, M.: ‘CDMA-based MAC protocol for wireless ad hoc networks’. Proc. 4th ACM Int. Symp. on Mobile Ad Hoc Networking & Computing (MobiHoc '03), Annapolis, Maryland, USA, 2003, pp. 153164.
    25. 25)
      • 26. Hussain, S.A., Iqbal, M., Saeed, A., et al: An efficient channel access scheme for vehicular ad hoc networks' [Research Article], 2017, available at: https://www.hindawi.com/journals/misy/2017/8246050/abs/.
    26. 26)
      • 30. Weber, S., Andrews, J.G., Jindal, N.: ‘An overview of the transmission capacity of wireless networks’, IEEE Trans. Commun., 2010, 58, (12), pp. 35933604.
    27. 27)
      • 5. Ajmal, S., Jabeen, S., Rasheed, A., et al: ‘An intelligent hybrid spread spectrum MAC for interference management in mobile ad hoc networks’, Comput. Commun., 2015, 72, pp. 116129.
    28. 28)
      • 20. Hasan, A., Andrews, J.G.: ‘The guard zone in wireless ad hoc networks’, IEEE Trans. Wirel. Commun., 2007, 6, (3), pp. 897906.
    29. 29)
      • 15. Pourgolzari, V., Ghorashi, S.A.: ‘A CDMA based MAC protocol for ad hoc networks with directional antennas’. 2011 Int. Symp. on Computer Networks and Distributed Systems (CNDS), Tehran, Iran, 2011, pp. 7377.
    30. 30)
      • 6. Li, X., Zhang, Y., Zhao, S., et al: ‘Exact secrecy throughput capacity study in mobile ad hoc networks’, Ad Hoc Netw., 2018, 72, pp. 105114.
    31. 31)
      • 11. Su, H., Moh, S.: ‘A robust deafness-free MAC protocol for directional antennas in ad hoc networks’, Wirel. Pers. Commun., 2017, 96, (1), pp. 11111129.
    32. 32)
      • 17. Ganti, R.K., Haenggi, M.: ‘Interference and outage in clustered wireless ad hoc networks’, IEEE Trans. Inf. Theory, 2009, 55, (9), pp. 40674086.
    33. 33)
      • 10. Kout, A., Labed, S., Chikhi, S., et al: ‘AODVCS, a new bio-inspired routing protocol based on cuckoo search algorithm for mobile ad hoc networks’, Wirel. Netw., 2018, 24, (7), pp. 25092519.
    34. 34)
      • 7. Lv, S., Zhuang, W., Wang, X., et al: ‘Scheduling in wireless ad hoc networks with successive interference cancellation’. 2011 Proc. IEEE INFOCOM, Shanghai, China, 2011, pp. 12871295.
    35. 35)
      • 29. Andrews, J., Shakkottai, S., Heath, R., et al: ‘Rethinking information theory for mobile ad hoc networks’, IEEE Commun. Mag., 2008, 46, (12), pp. 94101.
    36. 36)
      • 23. Cao, S., Lee, V.C.S.: ‘A novel adaptive TDMA-based MAC protocol for VANETs’, IEEE Commun. Lett., 2018, 22, (3), pp. 614617.
    37. 37)
      • 21. ElBatt, T., Ephremides, A.: ‘Joint scheduling and power control for wireless ad hoc networks’, IEEE Trans. Wirel. Commun., 2004, 3, (1), pp. 7485.
    38. 38)
      • 2. Hwang, I., Song, B., Soliman, S.S.: ‘A holistic view on hyper-dense heterogeneous and small cell networks’, IEEE Commun. Mag., 2013, 51, (6), pp. 2027.
    39. 39)
      • 24. Mehrnoush, M., Fathi, R., Vakili, V.T.: ‘Proactive spectrum handoff protocol for cognitive radio ad hoc network and analytical evaluation’, IET Commun., 2015, 9, (15), pp. 18771884.
    40. 40)
      • 9. Li, S., Sun, H., Dou, Z., et al: ‘Performance analysis of wireless ad-hoc network based on bidirectional full-duplex and saturated state’, IET Commun., 2018, 12, (12), pp. 14221430.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6191
Loading

Related content

content/journals/10.1049/iet-com.2018.6191
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address