http://iet.metastore.ingenta.com
1887

Decentralised resource allocation of position-based and full-duplex-based all-to-all broadcasting

Decentralised resource allocation of position-based and full-duplex-based all-to-all broadcasting

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The broadcasting services of vehicles in both vehicular networks and unmanned aerial vehicle (UAV) networks can be seen as the typical applications of all-to-all (A2A) scenario. In order to achieve efficient information broadcasting in A2A scenarios, this study proposes a two-stage resource allocation scheme. In the first stage, to improve the frequency spectrum reusability, the communication area is divided into as many non-overlapping square regions as possible based on the reliability requirements and power constraints of the vehicles, where the nonadjacent square regions share the same frequency spectrum. In the second stage, the vehicles belonging to the same region broadcast information with distributed time division multiplexing, and an improved coded slotted ALOHA scheme is proposed based on full-duplex, where each vehicle can detect whether its broadcasted information is successful. Thus, the number of retransmissions and collision probability can be reduced and therefore the system energy can be saved. Results indicate that the two-stage resource allocation scheme significantly improves the resource reusability while guaranteeing the communication reliability.

References

    1. 1)
      • 1. Nguyen, H.H., Jeong, H.Y.: ‘Mobility-adaptive beacon broadcast for vehicular cooperative safety-critical applications’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (6), pp. 19962010.
    2. 2)
      • 2. Zheng, K., Meng, H., Chatzimisios, P., et al: ‘An SMDP-based resource allocation in vehicular cloud computing systems’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 79207928.
    3. 3)
      • 3. Alshaer, H., Horlait, E.: ‘An optimized adaptive broadcast scheme for inter-vehicle communication’. Proc. 61st IEEE Vehicular Technology Conf. (VTC), Stockholm, Sweden, June 2005, pp. 28402844.
    4. 4)
      • 4. Qazi, B.R., Alshaer, H., Elmirghani, J.: ‘Development of a motorway simulator for vehicular multimedia communications’. Proc. IEEE Vehicular Technology Conf. (VTC) Fall, Calgary, BC, Canada, September 2008, pp. 15.
    5. 5)
      • 5. Sharma, V., Jayakody, D.N.K., You, I., et al: ‘Secure and efficient context-aware localization of drones in urban scenarios’, IEEE Commun. Mag., 2018, 56, (4), pp. 120128.
    6. 6)
      • 6. Yuan, X., Feng, Z., Xu, W., et al: ‘Capacity analysis of UAV communications: cases of random trajectories’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 75647576.
    7. 7)
      • 7. Challita, U., Saad, W.: ‘Network formation in the sky: unmanned aerial vehicles for multi-hop wireless backhauling’. Proc. IEEE GLOBECOM, 2017, 4, (8), pp. 16.
    8. 8)
      • 8. Jawhar, I., Mohamed, N., Al-Jaroodi, J., et al: ‘Communication and networking of UAV-based systems: classification and associated architectures’, J. Netw. Comput. Appl., 2017, 84, pp. 93108.
    9. 9)
      • 9. Ivanov, M., Brännström, F., Amat, A.G.i., et al: ‘Broadcast coded slotted ALOHA: a finite frame length analysis’, IEEE Trans. Commun., 2017, 65, (2), pp. 651662.
    10. 10)
      • 10. Motlagh, N.H., Taleb, T., Arouk, O.: ‘Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives’, IEEE Internet Things J., 2016, 3, (6), pp. 899922.
    11. 11)
      • 11. Lei, L., Xu, H., Xiong, X., et al: ‘Joint computation offloading and multi-user scheduling using approximate dynamic programming in NB-IoT edge computing system’, IEEE Internet Things J., 2019, 6, (3), pp. 53455362.
    12. 12)
      • 12. Cheng, X., Yang, L., Shen, X.: ‘D2D for intelligent transportation systems: a feasibility study’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 17841793.
    13. 13)
      • 13. Zheng, K., Zheng, Q., Chatzimisios, P., et al: ‘Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 23772396.
    14. 14)
      • 14. Zheng, K., Hou, L., Meng, H., et al: ‘Soft-defined heterogeneous vehicular network: architecture and challenges’, IEEE Netw. Mag., 2016, 30, (4), pp. 7280.
    15. 15)
      • 15. Song, L., Niyato, D., Han, Z., et al: ‘Game-theoretic resource allocation methods for device-to-device communication’, IEEE Wirel. Commun., 2014, 21, (3), pp. 136144.
    16. 16)
      • 16. Zeng, Y., Zhang, R., Lim, T.J.: ‘Wireless communications with unmanned aerial vehicles: opportunities and challenges’, IEEE Commun. Mag., 2016, 54, (5), pp. 3642.
    17. 17)
      • 17. Lin, X., Huang, L., Guo, C., et al: ‘Energy-efficient resource allocation in TDMS-based wireless powered communication networks’, IEEE Commun. Lett., 2017, 21, (4), pp. 861864.
    18. 18)
      • 18. Zhao, L., Wang, F., Zheng, K., et al: ‘Joint optimization of communication and traffic efficiency in vehicular networks’, IEEE Trans. Veh. Technol., 2018, 68, (2), pp. 20142018.
    19. 19)
      • 19. Liu, F., Zheng, K., Xiang, W., et al: ‘Design and performance analysis of an energy-efficient uplink carrier aggregation scheme’, IEEE J. Sel. Areas Commun., 2014, 32, (2), pp. 197207.
    20. 20)
      • 20. Botsov, M., Klügel, M., Kellerer, W., et al: ‘Location dependent resource allocation for mobile device-to-device communications’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, April 2014, pp. 16791684.
    21. 21)
      • 21. Qashi, R.: ‘Analysis of packet throughput and delay in IEEE 802.11 WLANs with TCP traffic’, GSTF J. Comput., 2012, 1, (4), pp. 101105.
    22. 22)
      • 22. Sun, W., Brannstrom, F., Ström, E.G.: ‘Network synchronization for mobile device-to-device systems’, IEEE Trans. Commun., 2017, 65, (3), pp. 11931206.
    23. 23)
      • 23. Ivanov, M., Brännström, F., Amat, A.G.i., Popovski, P.: ‘All-to-all broadcast for vehicular networks based on coded slotted ALOHA’. Proc. IEEE Int. Conf. Communication Workshop, London, June 2015, pp. 20462050.
    24. 24)
      • 24. Sun, Z., Xie, Y., Yuan, J., et al: ‘Coded slotted ALOHA for erasure channels: design and throughput analysis’, IEEE Trans. Commun., 2017, 65, (11), pp. 48174830.
    25. 25)
      • 25. Chen, S., Hu, J., Shi, Y., et al: ‘Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G’, IEEE Commun. Std. Mag., 2017, 1, (2), pp. 7076.
    26. 26)
      • 26. Luo, G., Li, J., Zhang, L., et al: ‘sdnMAC: a software-defined network inspired MAC protocol for cooperative safety in VANETs’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (6), pp. 20112024.
    27. 27)
      • 27. Zhang, J., Lu, L., Sun, Y., et al: ‘PoC of SCMA-based uplink grant-free transmission in UCNC for 5G’, IEEE J. Sel. Areas Commun., 2017, 35, (6), pp. 13531362.
    28. 28)
      • 28. Campolo, C., Molinaro, A., Berthet, A.O., et al: ‘Full-duplex radios for vehicular communications’, IEEE Commun. Mag., 2017, 55, (6), pp. 182189.
    29. 29)
      • 29. Alshaer, H., Elmirghani, J.M.H.: ‘Road safety based on efficient vehicular broadcast communications’. Proc. IEEE Intelligent Vehicles Symp., Xi'an, China, June 2009, pp. 11551160.
    30. 30)
      • 30. Ndikumana, A., Tran, N.H., Hong, C.S.: ‘Deep Learning based caching for self-driving car in multi-access edge computing’. ArXiv preprint. arXiv:1810.01548.
    31. 31)
      • 31. Weber, S.P., Andrews, J.G., Yang, X.: ‘Transmission capacity of ad hoc networks with successive interference cancellation’, IEEE Trans. Inf. Theory, 2007, 53, (8), pp. 27992814.
    32. 32)
      • 32. Yang, C., Xia, B., Xie, W., et al: ‘Interference cancelation at receivers in cache-enabled wireless networks’, IEEE Trans. Veh. Technol., 2018, 67, (1), pp. 842846.
    33. 33)
      • 33. Paolini, E., Liva, G., Chiani, M.: ‘Coded slotted ALOHA: a graph-based method for uncoordinated multiple access’, IEEE Trans. Inf. Theory, 2015, 61, (12), pp. 68156832.
    34. 34)
      • 34. Jakovetic, D., Bajovic, D., Vukobratovic, D., et al: ‘Cooperative slotted ALOHA for multi-base station systems’, IEEE Trans. Commun., 2015, 63, (4), pp. 14431456.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6137
Loading

Related content

content/journals/10.1049/iet-com.2018.6137
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address