access icon free Nyquist filter design

Designing a new pulse-shaping filter that satisfies the Nyquist condition to mitigate inter-symbol interference and achieve better stopband attenuation is a new step towards the development of next-generation mobile communication systems. In this study, the authors propose a novel Nyquist filter based on the convolution of a rectangular and a truncated sinc pulses. Introducing two-time parameters in the filter function provides more degrees of freedom and high flexibility to shape different Nyquist pulses. Four Nyquist pulse shapes are introduced, examined in terms of time and frequency characteristics, and compared with those of the two most popular pulses in the literature: root-raised cosine (RRC) and PHYDYAS. The results demonstrate an improvement in the eye pattern, impulse response, and spectrum behaviours. The error rates are evaluated over a noisy channel, and the new pulses offered better performance than PHYDYAS and RRC. The intrinsic interference was examined by determining the autocorrelation and cross-correlation coefficients of the prototype filters in the frequency-time grid. The results for the proposed filters portray good interference confinement either in time or frequency axis. The reduction in the out-of-band emission makes the proposed filter an efficient candidate for future filter bank multicarrier scheme.

Inspec keywords: channel bank filters; pulse shaping; signal denoising; filtering theory; correlation methods; intersymbol interference; time-frequency analysis

Other keywords: eye pattern; pulse-shaping filter; two-time parameters; root-raised cosine; interference confinement; noisy channel; stopband attenuation; filter function; frequency-time grid; degrees of freedom; Nyquist pulse shapes; inter-symbol interference mitigation; next-generation mobile communication systems; PHYDYAS; cross-correlation coefficients; error rates; Nyquist filter design; spectrum behaviours; out-of-band emission reduction; autocorrelation coefficients; impulse response; truncated sinc pulses; Nyquist condition; frequency characteristics; intrinsic interference; RRC; future filter bank multicarrier scheme; prototype filters

Subjects: Mathematical analysis; Signal processing theory; Filtering methods in signal processing; Mathematical analysis

References

    1. 1)
      • 19. Azurdia-Meza, C., Soto, I., Kamal, Sh.: ‘Sinc exponential ISI-free pulse with better performance’. Simposio Brasileiro De Telecomunicacoese Processamento (SBrT2017), Sinais, September 2017, pp. 36.
    2. 2)
      • 18. Azurdia-Meza, C.A., Estevez, C., Dehghan Firoozabadi, A., et al: ‘Evaluation of the sinc parametric linear combination pulse in digital communication systems’. 2016 8th IEEE Latin-American Conf. on Communications (LATINCOM), Medellin, 2016, pp. 15.
    3. 3)
      • 16. ETSI TS 136 104, T. S.: ETSI TS 136 104V9.4.0 (2010-07), LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 9.4.0 Release 9), 2010.
    4. 4)
      • 14. Azurdia-Meza, C.A., Lee, K., Lee, K.: ‘PAPR reduction in SC-FDMA by pulse shaping using parametric linear combination pulses’, IEEE Commun. Lett., 2012, 16, (12), pp. 20082011.
    5. 5)
      • 28. Singh, V.K., Flanagan, M.F., Cardiff, B.: ‘On symmetry properties of intrinsic interference in FBMC-OQAM systems’. 29th Irish Signals and Systems Conf. (ISSC), Belfast, June 2018.
    6. 6)
      • 27. Kasparick, M., Wunder, G., Chen, Y., et al: ‘5G waveform candidate selection D3.1’. 5Gnow, November 2013.
    7. 7)
      • 21. Azurdia-Meza, C., Lee, K.J., Lee, K.S.: ‘ISI-free linear combination pulses with better performance’, IEICE Trans. Commun., 2013, E96-B, (2), pp. 635638.
    8. 8)
      • 6. Assalini, A., Tonello, A.M.: ‘Improved Nyquist pulses’, IEEE Commun. Lett., 2004, 8, (2), pp. 8789.
    9. 9)
      • 24. Sood, R., Xiao, H.: ‘Root Nyquist pulses with an energy criterion’. 2007 IEEE Int. Conf. on Communications, Glasgow, 2007, pp. 27112716.
    10. 10)
      • 7. Alexandru, N.D., Balan Onofrei, A.L., Diaconu, F.: ‘Square-root improved Nyquist filter with a piece-wise rectangular frequency characteristic’. Proc. Int. Symp. on Signals, Circuits and Systems 2013, Iai, Romania, 11–12 July 2013.
    11. 11)
      • 12. Azurdia-Meza, C.A., Lee, K.J., Lee, K.S.: ‘PAPR reduction by pulse shaping using Nyquist linear combination pulses’, IEICE Electron. Express, 2012, 9, (19), pp. 15341541.
    12. 12)
      • 22. Azurdia-Meza, C.A., Estevez, C.: ‘Nyquist parametric linear combination pulses with better performance’. 2014 9th Int. Symp. on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, 2014, pp. 977981.
    13. 13)
      • 15. Nigam, G., Singh, R., Chaturvedi, A.K.: ‘Finite duration root Nyquist pulses with maximum in-band fractional energy’, IEEE Commun. Lett., 2010, 14, (9), pp. 797799.
    14. 14)
      • 8. Nyquist, H.: ‘Certain topics in telegraph transmission theory’, Trans. Am. Inst. Electr. Eng., 1928, 47, (2), pp. 617644.
    15. 15)
      • 9. Bobula, M., Prokeš, A., Daněk, K.: ‘Nyquist filters with alternative balance between time- and frequency-domain parameters’, EURASIP J. Adv. Signal Process., 2010, 2010, (1), pp. 111.
    16. 16)
      • 20. Sandeep, P., Chandan, S., Chaturvedi, A.K.: ‘ISI-free pulses with reduced sensitivity to timing errors’, IEEE Commun. Lett., 2005, 9, (4), pp. 292294.
    17. 17)
      • 25. Abdoli, J., Jia, M., Ma, J.: ‘Filtered OFDM: A new waveform for future wireless systems’. 2015 IEEE 16th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, 2015, pp. 6670.
    18. 18)
      • 5. Farhang-Boroujeny, B.: ‘A square-root Nyquist (M) filter design for digital communication systems’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 21272132.
    19. 19)
      • 13. Mustafa, S., Hikmat, V., Shekha, S.: ‘Wavelet filter bank-based non-uniform multi-tone transceiver for digital subscriber line’. IEEE 11th Int. Conf. on Computer and Information Technology, 2011, pp. 197203.
    20. 20)
      • 17. ETSI TS 136 101, ETSI TS 136 101V10.3.0 (2011-06), LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 10.3.0 Release 10), 2011.
    21. 21)
      • 3. Liu, Y., Chen, X., Zhong, Z., et al: ‘Waveform design for 5G networks: analysis and comparison’, IEEE. Access., 2017, 5, pp. 1928219292.
    22. 22)
      • 23. Aranda-Cubillo, J., Azurdia-Meza, C.A., Montejo-Sánchez, S., et al: ‘Analysis of the exponential linear pulse in baseband digital communication systems’. 2017 IEEE 9th Latin-American Conf. on Communications (LATINCOM), Guatemala City, 2017, pp. 16.
    23. 23)
      • 2. Bellanger, M.: ‘FBMC physical layer: A primer’, PHYDYAS: Physical Layer for Dynamic Access and Cognitive Radio, 2010. Available at http://www.ictphydyas.org/.
    24. 24)
      • 1. Sahin, A., Guvenc, I., Arslan, H.: ‘A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects’, IEEE Commun. Surv. Tutorials, 2014, 16, (3), pp. 13121338.
    25. 25)
      • 11. Beaulieu, N.C., Tan, C.C., Damen, M.O.: ‘A ‘better than’ Nyquist pulse’, IEEE Commun. Lett., 2001, 5, (9), pp. 367368.
    26. 26)
      • 4. Farhang-Boroujeny, B.: ‘OFDM versus filter bank multicarrier’, IEEE Signal Process. Mag., 2011, 28, (3), pp. 92112.
    27. 27)
      • 10. Smith, S.W.: ‘The scientist and engineer's guide to digital signal processing’ (California Tech. Pub., CA, San Diego, 1997), pp. 261296.
    28. 28)
      • 26. Zhang, X., Jia, M., Chen, L., et al: ‘Filtered-OFDM – enabler for flexible waveform in the 5th generation cellular networks’. 2015 IEEE Global Communications Conf. (GLOBECOM), San Diego, CA, 2015, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6132
Loading

Related content

content/journals/10.1049/iet-com.2018.6132
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading