access icon free Performance evaluation of four-level modified Manchester modulation format for high-speed optical transmission systems

A new multilevel modulation scheme centred on Manchester signalling known as four-level modified Manchester (4-MM) modulation format is envisioned and proven statistically for high-speed optical fibre transmission links. Similarly, the bit error rate (BER) assessment version has been developed for the envisioned 4-MM format. The performance of new 4-MM is examined and compared with conventional Manchester modulation, binary MM modulation, and four-level pulse amplitude modulation (4-PAM) formats in relation to receiver sensitivity, spectral efficiency, and chromatic dispersion tolerance. Therefore, the computed receiver sensitivity and chromatic dispersion tolerance at 10−9 BER of the envisioned 4-MM are −21.5 dBm and 95 ps/nm, respectively. The receiver sensitivity of 4-MM was improved by 3 dB in comparison with 4-PAM in a back-to-back configuration. Similarly, assessment of results indicates that 4-MM technique has a distinct benefit in comparison with binary MM and 4-PAM in achieving a dynamic role in the subsequent generation of high-speed optical access and short reach networks where power efficiency is of critical important.

Inspec keywords: optical receivers; optical fibre dispersion; optical fibre networks; pulse amplitude modulation; optical modulation; error statistics; optical fibre communication

Other keywords: 4-MM format; 4-MM technique; chromatic dispersion tolerance; Manchester signalling; four-level modified Manchester modulation format; four-level pulse amplitude modulation formats; binary MM modulation; conventional Manchester modulation; bit error rate assessment version; 4-PAM; high-speed optical access; high-speed optical transmission systems; multilevel modulation scheme; noise figure 3.0 dB; receiver sensitivity; high-speed optical fibre transmission links; time 95.0 ps

Subjects: Radio links and equipment; Other topics in statistics; Optical propagation, dispersion and attenuation in fibres; Optical fibre networks; Optical communication equipment; Fibre optics; Modulation and coding methods

References

    1. 1)
      • 20. Xu, J., Yu, X., Lu, W., et al: ‘Offset Manchester coding for Rayleigh noise suppression in carrier-distributed WDM-PONs’, Opt. Commun., 2015, 346, pp. 106109.
    2. 2)
      • 10. Malekmohammadi, A., Elsherif, M.A.: ‘A novel multilevel coding technique for high speed optical fiber communication systems’, Optik, 2014, 125, (2), pp. 639643.
    3. 3)
      • 24. Tonguz, O.K., Kazovsky, L.G.: ‘Theory of direct-detection lightwave receivers using optical amplifiers’, J. Lightwave Technol., 1991, 9, (2), pp. 174181.
    4. 4)
      • 7. Xia, J., Li, Z., Li, Y., et al: ‘Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON’, Opt. Commun., 2018, 410, (November 2017), pp. 328332.
    5. 5)
      • 19. Dong, Y., Li, Z., Lu, C, et al: ‘Improving dispersion tolerance of Manchester coding by incorporating duobinary coding’, IEEE Photonics Technol. Lett., 2006, 18, (16), pp. 17231725.
    6. 6)
      • 1. Jia, Q., Xie, R., Huang, T., et al: ‘Efficient caching resource allocation for network slicing in 5G core network’, IET Commun., 2017, 11, (18), pp. 27922799.
    7. 7)
      • 6. Dong-Nhat, N., Elsherif, M.A., Malekmohammadi, A.: ‘Investigations of high-speed optical transmission systems employing absolute added correlative coding (AACC)’, Opt. Fiber Technol., 2016, 30, pp. 2331.
    8. 8)
      • 13. Du, H., Green, R., Chen, Y.: ‘Optical wireless indoor multiple-input–multiple-output system using on–off keying and pulse position modulation modulations’, IET Commun., 2016, 10, (1), pp. 816.
    9. 9)
      • 26. Anderson, C.J., Lyle, J.A.: ‘Technique for evaluating system performance using q in numerical simulations exhibiting intersymbol interference’, Electron. Lett., 1994, 30, (1), pp. 7172.
    10. 10)
      • 4. Wu, L., Gao, F., Zhang, M., et al: ‘PAM4 based symmetrical 112-gbps long-reach TWDM-PON’, Opt. Commun., 2018, 409, (September 2017), pp. 117122.
    11. 11)
      • 17. Liu, X., Chandrasekhar, S., Wood, T.H., et al: ‘M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission’, Opt. Express, 2011, 19, (26), p. 868.
    12. 12)
      • 16. Huang, T., Sun, J.: ‘NRZ to manchester code conversion based on nonlinear optical fiber loop mirror’, Opt. Commun., 2012, 285, (16), pp. 35243528.
    13. 13)
      • 12. Chen, X., Li, A., Che, D., et al: ‘Block-wise phase switching for double-sideband direct detected optical OFDM signals’, Opt. Express, 2013, 21, (11), p. 13436.
    14. 14)
      • 22. Cartledge, J.C.: ‘Optimizing the bias and modulation voltages of MQW Mach–Zehnder modulators for 10 Gb/s transmission on nondispersion shifted fiber’, J. Lightwave Technol., 1999, 17, (7), pp. 11421151.
    15. 15)
      • 18. Malekmohammadi, A., Abdullah, M.K., Abas, A.F., et al: ‘Absolute polar duty cycle division multiplexing (APDCDM); technique for wireless communications’. 2008 Int. Conf. on Computer and Communication Engineering, Malaysia, 2008.
    16. 16)
      • 5. Dong-Nhat, N., Malekmohammadi, A.: ‘Absolute added correlative coding: an enhanced m-PAM modulation format’, Electron. Lett., 2015, 51, (20), pp. 15931595.
    17. 17)
      • 23. Cartledge, J.C., Member, S.: ‘Combining self-phase modulation and optimum modulation conditions to improve the performance of 10-Gb/s transmission systems using MQW Mach–Zehnder modulators’, J. Lightwave Technol., 2000, 18, (5), pp. 647655.
    18. 18)
      • 14. Avlonitis, N., Yeatman, E.M., Jones, M., et al: ‘Multilevel amplitude shift keying in dispersion uncompensated optical systems’, IEE Proc. Optoelectron., 2006, 153, (3), pp. 101108.
    19. 19)
      • 2. Elsherif, M.A., Malekmohammadi, A.: ‘Performance enhancement of mapping multiplexing technique utilising dual-drive Mach–Zehnder modulator for metropolitan area networks’, IET Optoelectron., 2015, 9, (2), pp. 108115.
    20. 20)
      • 15. Idowu Oluwajobi, F., Dong-Nhat, N., Malekmohammadi, A.: ‘Modified Manchester modulation format for high-speed optical transmission systems’, IET Optoelectron., 2018, 12, (4), pp. 202207.
    21. 21)
      • 9. Elsherif, M.A., Malekmohammadi, A.: ‘Power efficiency evaluation of mapping multiplexing technique and pulse amplitude modulation for noncoherent systems’, IEEE Photonics J., 2015, 7, (4), pp. 111.
    22. 22)
      • 25. Cartledge, J.C., Elrefaie, A.F.: ‘Effect of chirping-induced waveform distortion on the performance of direct detection receivers using traveling-wave semiconductor optical preamplifiers’, J. Lightwave Technol., 1991, 9, (2), pp. 209219.
    23. 23)
      • 3. Shao, S., Ding, J., Zheng, L., et al: ‘Study on the methods for generating optical PAM-4 signal with the standard silicon Mach–Zehnder optical modulator’, IEEE Photonics J., 2018, 10, pp. 112.
    24. 24)
      • 11. Dong-Nhat, N., Elsherif, M.A., Le Minh, H., et al: ‘NRZ versus RZ over absolute added correlative coding in optical metro-access networks’, Opt. Commun., 2017, 387, pp. 3036.
    25. 25)
      • 8. Malekmohammadi, A., Mahdiraji, G.A., Abas, A.F., et al: ‘Effect of self-phase-modulation on dispersion compensated absolute polar duty cycle division multiplexing transmission’, IET Optoelectron., 2009, 3, (5), pp. 207214.
    26. 26)
      • 21. Talib, R., Abdullah, M.F.L., Malekmohammadi, A., et al: ‘Multi-slot and multi-level coding technique over amplitude-shift keying modulation for optical communication links’. 16th European Conf. on Networks and Optical Communications, Newcastle-Upon-Tyne, UK, 2011, pp. 161164.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6113
Loading

Related content

content/journals/10.1049/iet-com.2018.6113
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading