Secrecy outage analysis of energy harvesting two-way relaying networks with friendly jammer

Secrecy outage analysis of energy harvesting two-way relaying networks with friendly jammer

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates two-way relaying where an energy harvesting capable relay exchanges information between two sources. Legitimate information is wire-tapped by an eavesdropper. To intercept wire-tapping, this study exploits a friendly jammer. Secrecy outage analysis of the energy harvesting two-way relaying network with the friendly jammer over Rayleigh fading channels is first proposed in terms of individual secrecy outage probabilities and then validated by computer simulations. Various results demonstrate the efficacy of the jammer in preventing the eavesdropper from stealing the source information and significant impacts of relay location, jammer location, jammer's transmit power, energy conversion efficiency, time switching ratio on the security performance.


    1. 1)
      • 1. Zhang, Z., Ma, Z., Ding, Z., et al: ‘Full-duplex two-way and one-way relaying: average rate, outage probability, and tradeoffs’, IEEE Trans. Wirel. Commun., 2016, 15, pp. 39203933.
    2. 2)
      • 2. Zhang, Z., Ma, Z., Xiao, M., et al: ‘Two-timeslot two-way full-duplex relaying for 5G wireless communication networks’, IEEE Trans. Commun., 2016, 64, pp. 28732887.
    3. 3)
      • 3. Chen, G., Xiao, P., Kelly, J.R., et al: ‘Full-duplex wireless-powered relay in two way cooperative networks’, IEEE Access, 2017, 5, pp. 15481558.
    4. 4)
      • 4. Zhou, X., Li, Q.: ‘Energy efficiency for SWIPT in MIMO two-way amplify-and-forward relay networks’, IEEE Trans. Veh. Technol., 2018, 67, pp. 49104924.
    5. 5)
      • 5. Yan, P., Zou, Y., Zhu, J.: ‘Energy-aware multiuser scheduling for physical-layer security in energy-harvesting underlay cognitive radio systems’, IEEE Trans. Veh. Technol., 2018, 67, pp. 20842096.
    6. 6)
      • 6. Chen, X., Guo, L., Li, X., et al: ‘Secrecy rate optimization for cooperative cognitive radio networks aided by a wireless energy harvesting jammer’, IEEE Access, 2018, 6, pp. 3412734134.
    7. 7)
      • 7. Khandaker, M.R.A., Wong, K.K., Zheng, G.: ‘Truth-telling mechanism for two-way relay selection for secrecy communications with energy-harvesting revenue’, IEEE Trans. Wirel. Commun., 2017, 16, pp. 31113123.
    8. 8)
      • 8. Okandeji, A.A., Khandaker, M.R.A., Wong, K., et al: ‘Secure full-duplex two-way relaying for SWIPT’, IEEE Wirel. Commun. Lett., 2018, 7, pp. 336339.
    9. 9)
      • 9. Chen, J., Zhang, R., Song, L., et al: ‘Joint relay and jammer selection for secure two-way relay networks’, IEEE Trans. Inf. Forensics Sec., 2012, 7, pp. 310320.
    10. 10)
      • 10. Zhang, R., Song, L., Han, Z., et al: ‘Physical layer security for two-way untrusted relaying with friendly jammers’, IEEE Trans. Veh. Technol., 2012, 61, pp. 36933704.
    11. 11)
      • 11. Hui, H., Swindlehurst, A.L., Li, G., et al: ‘Secure relay and jammer selection for physical layer security’, IEEE Signal Process. Lett., 2015, 22, pp. 11471151.
    12. 12)
      • 12. Han, S., Xu, S., Meng, W., et al: ‘Dense-device-enabled cooperative networks for efficient and secure transmission’, IEEE Netw., 2018, 32, pp. 100106.
    13. 13)
      • 13. Dong, L., Yousefi'zadeh, H., Jafarkhani, H.: ‘Cooperative jamming and power allocation for wireless relay networks in presence of eavesdropper’. Proc. IEEE Int. Conf. on Communications, Kyoto, Japan, 5–9 June 2011, pp.15.
    14. 14)
      • 14. Lv, L., Chen, J., Yang, L., et al: ‘Improving physical layer security in untrusted relay networks: cooperative jamming and power allocation’, IET Commun., 2017, 11, pp. 393399.
    15. 15)
      • 15. Deng, H., Wang, H.-M., Guo, W., et al: ‘Secrecy transmission with a helper: to relay or to jam’, IEEE Trans. Inf. Forensics Sec., 2015, 10, pp. 293307.
    16. 16)
      • 16. Liu, Y., Li, J., Petropulu, A.P.: ‘Destination assisted cooperative jamming for wireless physical-layer security’, IEEE Trans. Inf. Forensics Sec., 2013, 8, pp. 682694.
    17. 17)
      • 17. Wang, C., Wang, H.-M., Xia, X.-G.: ‘Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks’, IEEE Trans. Wirel. Commun., 2015, 14, pp. 589605.
    18. 18)
      • 18. Ho-Van, K., Do-Dac, T.: ‘Reliability-security trade-off analysis of cognitive radio networks with jamming and licensed interference’, Wirel. Commun. Mob. Comput., 2018, 2018, pp. 115, Article ID 5457176
    19. 19)
      • 19. Zhang, J., Tao, X., Wu, H., et al: ‘Secure transmission in SWIPT-powered two-way untrusted relay networks’, IEEE Access, 2018, 6, pp. 1050810519.
    20. 20)
      • 20. Sharma, S., Kumar, A., Roy, S.D., et al: ‘Secrecy outage probability of a two-way cooperative network with an energy harvesting untrusted AF relay’, CSI Trans. ICT, 2018, 6, pp. 129136.
    21. 21)
      • 21. Li, Q., Ma, W.K., Han, D.: ‘Sum secrecy rate maximization for full-duplex two-way relay networks using alamouti-based rank-two beamforming’, IEEE J. Sel. Top. Signal Process., 2016, 10, pp. 13591374.
    22. 22)
      • 22. Qiao, J., Zhang, H., Zhao, F., et al: ‘Secure transmission and self-energy recycling with partial eavesdropper CSI’, IEEE J. Sel. Areas Commun., 2018, 36, pp. 15311543.
    23. 23)
      • 23. Mamaghani, M.T., Mohammadi, A., Yeoh, P.L., et al: ‘Secure two-way communication via a wireless powered untrusted relay and friendly jammer’. Proc. IEEE Global Communications Conf., Singapore, 4–8 December 2017, pp. 16.
    24. 24)
      • 24. Gupta, V., Kalamkar, S.S., Banerjee, A.: ‘On secure communication using RF energy harvesting two-way untrusted relay’. Proc. IEEE Global Communications Conf., Singapore, 4–8 December 2017, pp. 712.
    25. 25)
      • 25. Lee, K., Hong, J., Choi, H., et al: ‘Wireless-powered two-way relaying protocols for optimizing physical layer security’, IEEE Trans. Inf. Forensics Sec., 2019, 14, pp. 162174.
    26. 26)
      • 26. Ho-Van, K., Do-Dac, T.: ‘Performance analysis of jamming technique in energy harvesting cognitive radio networks’, Telecommun. Syst., 2019, 70, pp. 321336.
    27. 27)
      • 27. Zhao, R., Huang, Y., Wang, W., et al: ‘Ergodic achievable secrecy rate of multiple-antenna relay systems with cooperative jamming’, IEEE Trans. Wirel. Commun., 2016, 15, pp. 25372551.
    28. 28)
      • 28. Zhang, C., Ge, J., Li, J., et al: ‘Complexity-aware relay selection for 5G large-scale secure two-way relay systems’, IEEE Trans. Veh. Technol., 2017, 66, pp. 54615465.
    29. 29)
      • 29. Gradstejn, I.S., Ryzik, I.M., Jeffrey, A., et al: ‘Table of integrals, series, and products’ (Academic Press, San Diego, USA, 2007).

Related content

This is a required field
Please enter a valid email address