http://iet.metastore.ingenta.com
1887

Hybrid precoding for millimetre wave MIMO systems based on particle swarm optimisation

Hybrid precoding for millimetre wave MIMO systems based on particle swarm optimisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Millimetre wave (mmWave) multiple-input multiple-output (MIMO) systems have been proposed to enable Gbps communication for next-generation cellular systems and local area networks. To compensate for the severe propagation loss of the mmWave channel, a cost-effective hybrid precoding architecture, combining a digital precoder and an analogue precoder, is widely used in mmWave MIMO systems. In this study, two hybrid precoding algorithms based on particle swarm optimisation (PSO) algorithm will be proposed for two different hybrid precoding structures, i.e. the fully connected and partially connected structures. First, the authors use the phase of the analogue precoding variable to replace the corresponding variable with the constraints of the unit norm to solve the non-convex constraints skillfully. Then they design analogue precoding by using PSO algorithm and compute the digital precoding based on the least squares solution. Finally, the proposed algorithms are compared with the existing advanced algorithms. Simulation results demonstrate that the proposed algorithms can approach the optimal performance under the corresponding structure.

References

    1. 1)
      • 1. Andrews, J.G., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    2. 2)
      • 2. Lu, L., Li, G.Y., Swindlehurst, A.L., et al: ‘An overview of massive mimo: benefits and challenges’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 742758.
    3. 3)
      • 3. Xiao, M., Mumtaz, S., Huang, Y., et al: ‘Millimeter wave communications for future mobile networks’, IEEE J. Sel. Areas Commun., 2017, 35, (9), pp. 19091935.
    4. 4)
      • 4. Wang, C., Haider, F., Gao, X., et al: ‘Cellular architecture and key technologies for 5G wireless communication networks’, IEEE Commun. Mag., 2014, 52, (2), pp. 122130.
    5. 5)
      • 5. Gubbi, J., Buyya, R., Marusic, S., et al: ‘Internet of things (iot): a vision, architectural elements, and future directions’, Future Gener. Comput. Syst., 2013, 29, (7), pp. 16451660.
    6. 6)
      • 6. Perera, C., Liu, C.H., Jayawardena, S., et al: ‘A survey on internet of things from industrial market perspective’, IEEE Access, 2014, 2, pp. 16601679.
    7. 7)
      • 7. Li, S., Xu, L.D., Zhao, S.: ‘5G internet of things: a survey’, J. Ind. Inf. Integr., 2018, 10, pp. 19.
    8. 8)
      • 8. Akpakwu, G.A., Silva, B.J., Hancke, G.P., et al: ‘A survey on 5G networks for the internet of things: communication technologies and challenges’, IEEE Access, 2018, 6, pp. 36193647.
    9. 9)
      • 9. Roh, W., Seol, J., Park, J., et al: ‘Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results’, IEEE Commun. Mag., 2014, 52, (2), pp. 106113.
    10. 10)
      • 10. Han, S., Xu, C.I.Z., Rowell, C.: ‘Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G’, IEEE Commun. Mag., 2015, 53, (1), pp. 186194.
    11. 11)
      • 11. Heath, R.W., González-Prelcic, N., Rangan, S., et al: ‘An overview of signal processing techniques for millimeter wave mimo systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 436453.
    12. 12)
      • 12. Xiao, Z., Xia, P., Xia, X.: ‘Codebook design for millimeter-wave channel estimation with hybrid precoding structure’, IEEE Trans. Wirel. Commun., 2017, 16, (1), pp. 141153.
    13. 13)
      • 13. Li, M., Wang, Z., Tian, X., et al: ‘Joint hybrid precoder and combiner design for multi-stream transmission in mmWave mimo systems’, IET Commun., 2017, 11, (17), pp. 25962604.
    14. 14)
      • 14. Rusu, C., Mèndez-Rial, R., González-Prelcic, N., et al: ‘Low complexity hybrid precoding strategies for millimeter wave communication systems’, IEEE Trans. Wirel. Commun., 2016, 15, (12), pp. 83808393.
    15. 15)
      • 15. Ayach, O.E., Heath, R.W., Abu-Surra, S., et al: ‘Low complexity precoding for large millimeter wave mimo systems’. 2012 IEEE Int. Conf. on Communications (ICC), Ottawa, Canada, June 2012, pp. 37243729.
    16. 16)
      • 16. Ayach, O.E., Rajagopal, S., Abu-Surra, S., et al: ‘Spatially sparse precoding in millimeter wave mimo systems’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 14991513.
    17. 17)
      • 17. Sohrabi, F., Yu, W.: ‘Hybrid digital and analog beamforming design for large-scale antenna arrays’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 501513.
    18. 18)
      • 18. Cui, M., Zou, W., Wang, Y., et al: ‘Low complexity joint hybrid precoding algorithm for millimeter wave mimo systems’, IEEE Access, 2018, 6, pp. 5642356432.
    19. 19)
      • 19. Kim, M., Lee, Y.H.: ‘Mse-based hybrid rf/baseband processing for millimeter-wave communication systems in mimo interference channels’, IEEE Trans. Veh. Technol., 2015, 64, (6), pp. 27142720.
    20. 20)
      • 20. Yu, X., Shen, J., Zhang, J., et al: ‘Alternating minimization algorithms for hybrid precoding in millimeter wave mimo systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 485500.
    21. 21)
      • 21. Gao, X., Dai, L., Han, S., et al: ‘Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 9981009.
    22. 22)
      • 22. Alluhaibi, O., Ahmed, Q.Z., Pan, C., et al: ‘Capacity maximisation for hybrid digital-to-analog beamforming mm-wave systems’. 2016 IEEE Global Communications Conf. (GLOBECOM), Washington, DC USA, December 2016, pp. 16.
    23. 23)
      • 23. Alkhateeb, A., Leus, G., Heath, R.W.: ‘Limited feedback hybrid precoding for multi-user millimeter wave systems’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 64816494.
    24. 24)
      • 24. Yu, Q., Han, C., Bai, L., et al: ‘Low-complexity multiuser detection in millimeter-wave systems based on opportunistic hybrid beamforming’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 1012910133.
    25. 25)
      • 25. Bai, L., Li, T., Yu, Q., et al: ‘Cooperative multiuser beamforming in mmwave distributed antenna systems’, IEEE Trans. Veh. Technol., 2018, 67, (12), pp. 1239412397.
    26. 26)
      • 26. Alkhateeb, A., Ayach, O.E., Leus, G., et al: ‘Channel estimation and hybrid precoding for millimeter wave cellular systems’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 831846.
    27. 27)
      • 27. Li, Y., Tao, C., Seco-Granados, G., et al: ‘Channel estimation and performance analysis of one-bit massive mimo systems’, IEEE Trans. Signal Process., 2017, 65, (15), pp. 40754089.
    28. 28)
      • 28. Xiao, Z., Dong, H., Bai, L., et al: ‘Enhanced channel estimation and codebook design for millimeter-wave communication’, IEEE Trans. Veh. Technol., 2018, 67, (10), pp. 93939405.
    29. 29)
      • 29. Rappaport, T.S., Heath, R.W., Daniels, R.C., et al: ‘Millimeter wave wireless communications’ (Prentice-Hall, Upper Saddle, NJ, USA, 2015).
    30. 30)
      • 30. Akdeniz, M.R., Liu, Y., Samimi, M.K., et al: ‘Millimeter wave channel modeling and cellular capacity evaluation’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 11641179.
    31. 31)
      • 31. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. of ICNN'95 - Int. Conf. on Neural Networks, Perth, Australia, November 1995, vol. 4, pp. 19421948.
    32. 32)
      • 32. Couceiro, M., Ghamisi, P.: ‘Fractional Order Darwinian Particle Swarm Optimization’ (Springer International Publishing, Berlin, Germany, 2016).
    33. 33)
      • 33. Jain, N.K., Nangia, U., Jain, J.: ‘A review of particle swarm optimization’, J. Inst. Eng., 2018, 99, (3), pp. 15.
    34. 34)
      • 34. Li, N., Wei, Z., Yang, H., et al: ‘Hybrid precoding for mmWave massive mimo systems with partially connected structure’, IEEE Access, 2017, 5, pp. 1514215151.
    35. 35)
      • 35. Zhang, D., Wang, Y., Li, X., et al: ‘Hybridly connected structure for hybrid beamforming in mmWave massive mimo systems’, IEEE Trans. Commun., 2018, 66, (2), pp. 662674.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6081
Loading

Related content

content/journals/10.1049/iet-com.2018.6081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address