http://iet.metastore.ingenta.com
1887

Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems

Hybrid beamforming for downlink multiuser millimetre wave MIMO-OFDM systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors consider multi-user millimetre wave (mmWave) multiple-input multiple-output (MIMO) downlink communications for multi-carrier scenarios, e.g. orthogonal frequency-division multiplexing (OFDM) a common analogue precoder and combiner for the transmitter and receiver to maximise spectral efficiency is the main challenge for multi-carrier MIMO systems, they propose two methods to solve this problem. The first method designs the analogue precoder and combiner based on the channel average of all subcarriers, which helps reduce computational complexity. Moreover, the channels of all subcarriers can be viewed as a third-order tensor, and the second method is based on tensor unfolding, which makes full use of the channel information of all subcarriers. When the common analogue precoder and combiner are fixed, they consider designing a digital precoder to maximise the signal-to-leakage-plus-noise ratio of each user in every subcarrier, which leads to closed-form solutions compared with the block diagonal method. Simulation results demonstrate that the performance of the proposed methods is close to that of the fully digital precoding method, and increasing the number of RF transceiver chains helps improve the performance of the proposed methods.

References

    1. 1)
      • 1. Swindlehurst, A.L., Ayanoglu, E., Heydari, P., et al: ‘Millimeter-wave massive MIMO: the next wireless revolution?’, IEEE Commun. Mag., 2014, 52, (9), pp. 5662.
    2. 2)
      • 2. Boccardi, F., Heath, R.W.Jr., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Commun. Mag., 2014, 52, (2), pp. 7480.
    3. 3)
      • 3. Pi, Z., Khan, F.: ‘An introduction to millimeter-wave mobile broadband systems’, IEEE Commun. Mag., 2011, 49, (6), pp. 101107.
    4. 4)
      • 4. Xiang, W., Zheng, K., Shen, X.: ‘5G mobile communications’ (Springer, New York, NY, USA, 2016).
    5. 5)
      • 5. Ayach, O.E., Rajagopal, S., Abu-Surra, S., et al: ‘Spatially sparse precoding in millimeter wave MIMO systems’, IEEE Trans. Wireless Commun., 2014, 13, (3), pp. 14991513.
    6. 6)
      • 6. Gao, X., Dai, L., Han, S., et al: ‘Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 9981009.
    7. 7)
      • 7. Zhang, D., Wang, Y., Li, X., et al: ‘Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems’, IEEE Trans. Commun., 2018, 66, (2), pp. 662674.
    8. 8)
      • 8. Sohrabi, F., Yu, W.: ‘Hybrid digital and analog beamforming design for large-scale antenna arrays’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 501513.
    9. 9)
      • 9. Alkhateeb, A., Leus, G., Heath, R.W.: ‘Limited feedback hybrid precoding for multi-user millimeter wave systems’, IEEE Trans. Wireless Commun., 2015, 14, (11), pp. 64816494.
    10. 10)
      • 10. Ni, W., Dong, X.: ‘Hybrid block diagonalization for massive multiuser MIMO systems’, IEEE Trans. Commun., 2016, 64, (1), pp. 201211.
    11. 11)
      • 11. Wu, X., Liu, D., Yin, F.: ‘Hybrid beamforming for multi-user massive MIMO systems’, IEEE Trans. Commun., 2018, 66, (9), pp. 38793891.
    12. 12)
      • 12. Zhang, D., Wang, Y., Xiang, W.: ‘Leakage-based hybrid beamforming design for downlink multiuser mmWave MIMO systems’. Proc. IEEE 28th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, Canada, 2017, pp. 15.
    13. 13)
      • 13. Yu, X., Shen, J.C., Zhang, J., et al: ‘Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 485500.
    14. 14)
      • 14. Bogale, T.E., Le, L.B., Haghighat, A., et al: ‘On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming’, IEEE Trans. Wirel. Commun., 2016, 15, (5), pp. 33113326.
    15. 15)
      • 15. Alkhateeb, A., Heath, R.W.: ‘Frequency selective hybrid precoding for limited feedback millimeter wave systems’, IEEE Trans. Commun., 2016, 64, (5), pp. 18011818.
    16. 16)
      • 16. Park, S., Alkhateeb, A., Heath, R.W.: ‘Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems’, IEEE Trans. Wirel. Commun., 2017, 16, (5), pp. 29072920.
    17. 17)
      • 17. Kim, C., Kim, T., Seol, J.: ‘Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems’. Proc. IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, 2013, pp. 6165.
    18. 18)
      • 18. Sohrabi, F., Yu, W.: ‘Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays’, IEEE J. Sel. Areas Commun., 2017, 35, (7), pp. 14321443.
    19. 19)
      • 19. Kwon, Y., Chung, J., Sung, Y.: ‘Hybrid beamformer design for mmWave wideband multi-user MIMO-OFDM systems: (invited paper)’. Proc. IEEE 18th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, 2017, pp. 15.
    20. 20)
      • 20. Zhu, D., Li, B., Liang, P.: ‘A novel hybrid beamforming algorithm with unified analog beamforming by subspace construction based on partial CSI for massive MIMO-OFDM systems’, IEEE Trans. Commun., 2017, 65, (2), pp. 594607.
    21. 21)
      • 21. Chen, R., Xu, H., Li, C., et al: ‘Hybrid beamforming for broadband millimeter wave massive MIMO systems’. Proc. IEEE 87th Vehicular Technology Conf. (VTC Spring), Porto, 2018, pp. 15.
    22. 22)
      • 22. Yu, X., Zhang, J., Letaief, K.B.: ‘Alternating minimization for hybrid precoding in multiuser OFDM mmWave systems’. Proc. IEEE 2016 50th Asilomar Conf. on Signals,Systems and Computers, Pacific Grove, CA, 2016, pp. 281285.
    23. 23)
      • 23. González-Coma, J.P., Rodríguez-Fernández, J., González-Prelcic, N., et al: ‘Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems’, IEEE J. Sel. Signal Process., 2018, 12, (2), pp. 353367.
    24. 24)
      • 24. Rodriguez-Fernández, J., Gonzálcz-Prelcic, N.: ‘Low-complexity multiuser hybrid precoding and combining for frequency selective millimeter wave systems’. Proc IEEE 19th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018, pp. 15.
    25. 25)
      • 25. Raghavan, V., Sayeed, A.M.: ‘Sublinear capacity scaling laws for sparse MIMO channels’, IEEE Trans. Inf. Theory., 2011, 57, (1), pp. 345364.
    26. 26)
      • 26. Rappaport, T.S., Gutierrez, F., Ben-Dor, E., et al: ‘Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 18501859.
    27. 27)
      • 27. Saleh, A.A.M., Valenzuela, R.: ‘A statistical model for indoor multipath propagation’, IEEE J. Sel. Areas Commun., 1987, 5, (3), pp. 128137.
    28. 28)
      • 28. Sadek, M., Tarighat, A., Sayed, A.H.: ‘Active antenna selection in multiuser MIMO communications’, IEEE Trans. Signal Process., 2007, 55, (4), pp. 14981510.
    29. 29)
      • 29. Sadek, M., Tarighat, A., Sayed, A.H.: ‘A leakage-based precoding scheme for downlink multi-user MIMO channels’, IEEE Trans. Wirel. Commun., 2007, 6, (5), pp. 17111721.
    30. 30)
      • 30. Sadek, M., Aissa, S.: ‘Leakage based precoding for multi-user MIMO-OFDM systems’, IEEE Trans. Wirel. Commun., 2011, 10, (8), pp. 24282433.
    31. 31)
      • 31. Palomar, D.P., Cioffi, J.M., Lagunas, M.A.: ‘Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization’, IEEE Trans. Signal Process., 2003, 51, (9), pp. 23812401.
    32. 32)
      • 32. Palomar, D.P., Chiang, M.: ‘A tutorial on decomposition methods for network utility maximization’, IEEE J. Sel. Areas Commun., 2006, 24, (8), pp. 14391451.
    33. 33)
      • 33. Rodríguez-Fernández, J., González-Prelcic, N., Venugopal, K., et al: ‘Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems’, IEEE Trans. Wirel. Commun, 2018, 17, (5), pp. 29462960.
    34. 34)
      • 34. Lin, X., Wu, S., Jiang, C., et al: ‘Estimation of broadband multiuser millimeter-wave massive MIMO-OFDM channels by exploiting their sparse structure’, IEEE Trans. Wirel. Commun., 2018, 17, (6), pp. 39593973.
    35. 35)
      • 35. Zhou, Z., Fang, J., Yang, L., et al: ‘Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems’, IEEE J. Sel. Areas Commun., 2017, 35, (7), pp. 15241538.
    36. 36)
      • 36. Kolda, T.G., Bader, B.W.: ‘tensor decompositions and applications’, SIAM Rev., 2009, 51, (3), pp. 455500.
    37. 37)
      • 37. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (JHU Press, Baltimore, USA, 2012).
    38. 38)
      • 38. Kailath, T., Sayed, A.H., Hassibi, B.: ‘Linear estimation’ (Prentice-Hall, New Jersey, USA, 2000).
    39. 39)
      • 39. Rusek, F., et al: ‘Scaling up MIMO: opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 4060.
    40. 40)
      • 40. Jindal, N.: ‘MIMO broadcast channels with finite-rate feedback’, IEEE Trans. Inf. Theory, 2006, 52, (11), pp. 50455060.
    41. 41)
      • 41. Eckart, C., Young, G.: ‘The approximation of one matrix by another of lower rank’, Psychometrika, 1936, 1, pp. 211218.
    42. 42)
      • 42. Jolliffe, I.T.: ‘Principal component analysis’ (Springer-Verlag, New York, 1986).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6061
Loading

Related content

content/journals/10.1049/iet-com.2018.6061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address